
ProdSim
Release 0.1.0

Tom Fuchs

Dec 29, 2021

CONTENTS

1 Table of Contents 3
1.1 API Reference . 3
1.2 Interface Files . 6
1.3 Defining processes . 26
1.4 Examples . 33

Python Module Index 55

Index 57

i

ii

ProdSim, Release 0.1.0

ProdSim is a process-based discrete event simulation for production environments based on the SimPy framework. The
package is designed to generate large high-resolution synthetic production data sets.

The characteristics of a production system are represented by three system components, namely machines, workpieces,
and a factory. These components interact with one another on the following three system layers:

• logistics

• stations

• processes

The bottom level, namely the process level, models elementary assembly or machining operations in which the prop-
erties and behavior of the system components can be influenced. The middle level, namely the station level, maps the
system’s buffer stores and groups machines together into stations according to a workshop or line production. At the
top level, namely the layout level, workpieces are created by sources and removed by sinks. In addition, the material
flow of workpieces through the production process is described.

Users must define production processes in two input files. In a JSON file, all orders, stations, and the factory are
defined. In a Python script, the users specify the assembly and processing functions, the behavior of the sources and
sinks, as well as global functions and user-defined distributions for attribute values.

Additionally, the package offers functionalities for the visualization of passed production processes, verification of
input files, and methods for estimating the simulation runtime

The following code displays the typical usage of the package:

from prodsim import Environment

def main():

Create simulation Environment
env = Environment()

Read the input files
env.read_files('./data/process.json', './data/function.py')

Inspect and visualize the input data (optional)
env.inspect()
env.visualize()

Start the simulation
env.simulate(sim_time=10_000, progress_bar=True, max_memory=5, bit_type=64)

export the output data
env.data_to_csv("./data/output/", remove_column=['item_id'], keep_original=True)

(continues on next page)

CONTENTS 1

https://simpy.readthedocs.io/en/latest/

ProdSim, Release 0.1.0

(continued from previous page)

if __name__ == '__main__':

main()

How this documentation should be used:

The API Reference chapter provides an overview of all methods and their attributes as well as the corresponding data
types. The Interface Files chapter describes the structure to be followed by the input files. These two chapters are
designed as a reference for specific content. In the final Examples chapter, examples are chronologically matched to
the later simulation study and contain all elementary features of the package. Since some modeling techniques are also
explained, studying these examples is recommended before conducting one’s own simulation study.

2 CONTENTS

CHAPTER

ONE

TABLE OF CONTENTS

1.1 API Reference

1.1.1 Environment

The Environment class represents the central element of the library. All offered simulation functionalities are available
to the user in the methods through an object of this class. In addition, the environment controls all program-internal
method calls as well as access to the process data in the background.

class environment.Environment
Execution Environment for the event-based production simulation.

clear_env()→ None
Reinitialize the environment object between two different simulation runs.

After calling this method, a new process must be read in.

data_to_csv(path_to_wd: str, remove_column: Optional[List[str]] = None, keep_original: bool = True)→
None

Exports the simulation data to csv files.

Parameters

• path_to_wd (str) – Path to the target directory

• remove_column (List[str], optional) – List of labels whose columns are removed
before saving

• keep_original (bool, optional) – Keep an additional original file without removed
columns

Raises MissingData – simulate was not called before

Note: If the passed folder does not exist, then the program creates it.

data_to_hdf5(path_to_wd: str, file_name: str)→ None
Exports the simulation data to hdf5 files.

Creates a hdf5 file in which each simulation object is stored a group. The metadata (‘header’) of each
simulation object is stored in an attribute and the simulation data in datasets of size max_memory.

Parameters

• path_to_wd (str) – Path to the target directory

• file_name (str) – Name of the hdf5 file

3

ProdSim, Release 0.1.0

Raises MissingData – simulate was not called before

Note: If the passed folder does not exist, then the program creates it.

define_process()→ None
Launches an interactive web application to define a new production process. This method initiates a local
development app on a flask server on localhoast:8050.

inspect()→ None
Checks the passed input files for errors of logical and syntactic nature.

Raises MissingData – read_files was not called, or the data read in does not contain the
arrays ‘order’ and ‘station’

Note: This method is only a support and does not guarantee an error-free simulation run.

read_files(path_data_file: str, path_function_file: str)→ None
Reads in the process input files.

Parameters

• path_data_file (str) – Path to the JSON file with the process data

• path_function_file (str) – Path to the py file with the function definitions

Raises

• FileNotFoundError – Files could not be found

• MissingParameter – The ‘order’ or ‘station’ array is not defined in the process file or an
order or station object has no name

• UndefinedFunction – One of the referenced functions cannot be found in the function
file

• UndefinedObject – One of the referenced orders or stations cannot be found in the data
file

• InvalidType – The component list has an element that is not of type list, or the capacity
of an order or station is not of type int

• InvalidValue – The capacity of an order or station is not greater than zero

• NotSupportedParameter – One of the values of the user-defined factory attributes has
an undefined identifier

simulate(sim_time: int, track_components: Optional[List[str]] = None, progress_bar: bool = False,
max_memory: float = 2, bit_type: int = 32)→ None

Starts the simulation run.

Parameters

• sim_time (int) – Simulated time

• track_components (List[str], optional) – List of strings representing components
whose process data is to be stored

• progress_bar (bool, optional) – Specifies whether a progress bar should be dis-
played

• max_memory (float, optional) – Maximal size of a single a numpy data array [Mb]

4 Chapter 1. Table of Contents

ProdSim, Release 0.1.0

• bit_type (int, optional) – Bit type with which the values are stored

Raises MissingData – read_files was not called or the data read in does not contain ‘order’
or ‘station’

visualize()→ None
Launches an interactive web application to display the input data. This method initiates a local development
app on a flask server on localhoast:8050.

Raises MissingData – read_files was not called or the data read in does not contain the
‘order’ or ‘station’ array

Note: This method initiates a local development app on a flask server on localhoast:8050.

1.1.2 Estimator

The Estimator class offers some functionalities through which the runtime behavior of the simulation can be estimated.
Alternatively, a reference simulation with a short simulation time can be performed, and the measured simulation time
can be scaled proportionally. However, the function est_function is especially useful for developing suitable process
functions.

class estimator.Estimator
Estimator for estimating the expected simulation time.

est_attribute(distribution: List[tuple], num_station: int, track: bool)→ float
Estimates the time caused by additional attributes.

Parameters

• distribution (List[tuple]) – List of attributes to be estimated

• num_station (int) – Number of stations that workpieces of the order under consideration
pass through

• track (bool) – Indicates whether the order is being tracked

Returns Estimated additional simulation time for additional attributes

Return type float

est_function(function: Callable, num_station: int, track: bool, imports: Optional[List[str]] = None,
objects: Optional[Dict[str, object]] = None, item_attributes: Optional[Dict[str, list]] = None,
machine_attributes: Optional[Dict[str, list]] = None, factory_attributes: Optional[Dict[str,
list]] = None)→ float

Estimates the time caused by a specific function.

Parameters

• function (Callable) – List of attributes to be estimated

• num_station (int) – Number of stations at which the process function is called

• track (bool) – Indicates whether the order is being tracked

• imports (List[str], optional) – List of all used import statements

• objects (List[object], optional) – List of all used objects

• item_attributes (Dict[str, list], optional) – List of all item attributes used in
the function

1.1. API Reference 5

ProdSim, Release 0.1.0

• machine_attributes (Dict[str, list], optional) – List of all machine attributes
used in the function

• factory_attributes (Dict[str, list], optional) – List of all factory attributes
used in the function

Raises InvalidFunction – Function name is ‘function1’

Returns Estimated time for a single function call

Return type float

est_item(track: bool)→ float
Estimates the time for creating a workpiece.

Parameters track (bool) – Indicates whether the order is being tracked

Returns Estimated simulation time for creating a workpiece without attributes

Return type float

est_station(track: bool)→ float
Estimates the time caused by the recursive process logic.

Parameters track (bool) – Indicates whether the order is being tracked

Returns Estimated simulation time for simply passing through stations (without functions and
item attributes)

Return type float

1.2 Interface Files

This chapter defines the structure of the two input interface files and the options available to the user for mapping
production processes. First, the elements of the JSON file describing the simulation objects are presented, followed by
the different function types of the py file.

• Data file

• Function file

A further section describes the possible distributions used to initialize the attributes of simulation objects when they
are created.

• Attribute values

Note: A subset of the exceptions listed in the following sections will only be thrown when the inspect method is called.

6 Chapter 1. Table of Contents

ProdSim, Release 0.1.0

1.2.1 Production structure

Each production process is defined in its own JSON file. This file contains a top-level object with two required attributes
and one optional one. The structure of these attributes is described as follows:

1. Order

2. Station

3. Factory

Order

The Order attribute is an attribute of the top-level production process object and is of the type JSON Array. This array
contains JSON objects and defines an order that combines all of the information about a particular order. The attributes
of an order are differentiated into predefined and user-defined attributes. Any attribute whose name is not predefined
is considered a user-defined attribute. In this section, all predefined attributes are described in detail. The possible
characteristics of the user-defined attributes are described in a separate section. section.

Note: Only the individual parameters are described below. In example 01 , a concrete example of this file is given.

name

The name is a required parameter of the data type String. It will later serve as an identifier for the different jobs and
should therefore be unique.

Value Explanation
Optional no
Default value /
Exceptions MissingParameter If name was not set
Warnings BadType If name isn ot a string

Warning: Since the suffix ‘_x’ references identical assembly workpieces that are assembled in different process
steps (see process function), the name cannot have such a suffix.

priority

The priority is an optional integer parameter. It determines the processing order when multiple jobs request the same
scarce resource. If no priorities are set, then the program determines its order. A small value corresponds to a high
priority. If several orders do not use the same station, then the priorities have no meaning.

Value Explanation
Optional yes
Default value 10
Exceptions InvalidType If priority is not an integer

InvalidValue If priority is less than one

storage

The storage is an optional integer parameter that specifies the storage capacity of the final store of an order. The storage
is a piece value.

1.2. Interface Files 7

ProdSim, Release 0.1.0

Note: Even though this parameter is optional, it should always be set if there is no perfect understanding of the process;
otherwise, situations may occur where an increasing number of item objects are stored in stores over the simulation
time. This would lead to memory overload and slow the simulation speed.

Value Explanation
Optional yes
Default value infinite
Exceptions InvalidType If capacity is not an integer

InvalidValue If capacity is less than one

source

The source is a required parameter of type string. The function from the production functions file with the corresponding
name is assigned to this order.

Value Explanation
Optional yes
Default value /
Exceptions UndefinedFunction Function is not defined in the passed file

InvalidFunction Function is not a generator function
InvalidSignature Function does not have exactly two arguments
InvalidYield Yielded object is not of type int or Timeout
InfiniteLoop Source contains an infinite loop
MissingParameter No source was defined

Warnings BadSignature The signature is not (‘env’, ‘factory’)
BadYield Source does not yield a timeout event

sink

The sink is an optional parameter of type string. This order is assigned the function from the production functions file
with the corresponding name. If workpieces of this order represent assembly workpieces concerning another process,
then the default sink will never be active. If this is not the case, then it removes all workpieces from the final store
without a time delay.

Value Explanation
Optional yes
Default value infinite source If item is not part of an assembly process

no source If item is part of an assembly process
Exceptions UndefinedFunction Function is not defined in the passed file

InvalidFunction Function is not a generator function
InvalidSignature Function does not have exactly two arguments
InvalidYield Yielded object is not of type int or Timeout
InfiniteLoop Source contains an infinite loop

Warnings BadSignature The signature is not (‘env’, ‘factory’)
BadYield Source does not yield a timeout event

station

The station attribute is an optional attribute of type Array. This array contains strings that represent the names of
stations in the order in which items of this order visit them. The default value is an empty array, which means that the

8 Chapter 1. Table of Contents

ProdSim, Release 0.1.0

source places new workpieces directly into the final store (reflecting, for example, the retrieval of external assembly
workpieces).

Value Explanation
Optional yes
Default value []
Exceptions UndefinedObject No station is defined with this name

Note: The program does not throw exceptions related to the array’s length because the size of this array is considered
a reference for the length of the other arrays.

function

The function attribute is an optional attribute of type array. It contains strings that correspond to the names of functions
defined in the process functions file. The index position determines the connection of process functions to stations.

Value Explanation
Optional yes
Default value []
Exceptions UndefinedFunction No function with this name is defined

InvalidSignature Function does not have four arguments
MissingParameter Number of functions does not match the number of stations

Warnings BadSignature At least one argument has a bad name
BadYield Function does not yield a simpy.Timeout object

demand

The demand parameter is an optional parameter of type array. The index position of the entries connects them to the
stations from the station’s list. If a station performs an assembly or a pure machining process in a given process step,
then it determines the structure of the entries of the array. In machining at the station with index position i, the i-th
element of the demand array is an integer that determines the demand of this station. Another array of integers at
the corresponding index position in an assembly, which determines the number of individual assembly pieces. The
component attribute specifies which workpieces are used in an assembly. The default value is a list with only 1s and
the length of the station list. Thus, the default case represents a pure line production.

Value Explanation
Optional yes
Default value [1, 1, .., 1] Only possible if there is no assembly
Exceptions MissingParameter Number of elements does not match the number of stations

InvalidType If the list contains different objects than int or list of int
InvalidValue Integer element in the list is not greater than zero

Note: No exceptions are thrown if the inner structure does not fit around the attribute component because demand
serves as a reference to avoid redundant error messages.

component

The component attribute is an optional attribute of type array. The inner structure of this array corresponds to that
of the demand demand attribute. In the case of pure processing, there is an empty array at the corresponding index
position. In assembly, the inner array contains strings that correspond to the names of orders and specify what type

1.2. Interface Files 9

ProdSim, Release 0.1.0

the assembly workpieces should be. The default value is an array with only empty arrays; thus, as with the attribute
demand, a pure line production is represented.

Value Explanation
Optional yes
Default value [[], [], .., []] Only possible if there is no assembly
Exceptions MissingParameter Number of elements does not match the number of stations or the

length of the assembly process list does not match the length of
the assembly demand list

UndefinedObject No item is defined with this name
InvalidValue Structure does not correspond to the demand structure
InvalidType List contains object with a type other than ‘list’

Station

The station attribute is an attribute of the top-level production process object and is of the type JSON Array. This
array contains JSON objects that define a station that combines all of the information about a particular station. The
attributes of a station are differentiated into predefined and user-defined attributes. Every attribute whose name is not
predefined is considered a user-defined attribute. This section describes all predefined attributes in detail. The possible
characteristics of the user-defined attributes are described in a separate section.

Note: Only the individual parameters are described below. In example 01, a concrete example of this file is given.

name

The name is a required parameter of type string. It is used later to identify station objects and therefore must be unique.

Value Explanation
Optional no
Default value /
Exceptions MissingParameter If name was not set
Warnings BadType If name is not a string

capacity

The capacity is an optional integer parameter. It specifies the number of machines that the corresponding station has and
thus serves to map the production type of the shop floor production. The default value is one and it thus rather represents
a line production process. If a station has several machines, then one of the free machines is selected randomly before
machining at this station.

Value Explanation
Optional yes
Default value 1
Exceptions InvalidType If capacity is not an integer

InvalidValue If capacity is less than one

storage

The storage attribute is optional and of type integer. It describes the storage capacity of the buffer storage of a station.
This attribute is a unit value.

10 Chapter 1. Table of Contents

ProdSim, Release 0.1.0

Note: Even though this parameter is optional, it should always be set if a perfect understanding of the process does
not exist; otherwise, an arbitrary accumulation of numerous objects could occur in the memory, which would slow the
simulation arbitrarily.

Value Explanation
Optional yes
Default value infinite
Exceptions InvalidType If storage is not an integer

InvalidValue If storage is less than one

measurement

The measurement attribute is optional and of type Boolean. If a station is a measurement or quality control station
where the item attributes are not changed, then this attribute should be set to ‘true’. The effect is that workpieces will
not be tracked at this station, regardless of whether they are tracked at other stations.

Value Explanation
Optional yes
Default value false
Exceptions InvalidType If measurement is not a Boolean

Factory

The factory attribute is an optional attribute of the top-level production process object. Unlike the order and station
attributes, it is not an array but rather a single JSON object. This object contains all global attributes that any process
function, sink, source, and global function can retrieve. All of these attributes are user-definable. The rules that apply to
these attributes are described in the ‘Attribute values’ section. In addition, the factory object has a predefined attribute,
which is described below.

function

The function is an optional attribute of type array. This array contains strings that correspond to the global functions
from the functions file. The global variables are controlled from these functions, whose structure is described in more
detail in the ‘function file section.

Value Explanation
Optional yes
Default value []
Exceptions UndefinedFunction No function with this name is defined

InvalidFunction Function is not a generator function
InvalidSignature Function does not have exactly two argument
InvalidYield Function yielded an object that is not of type

Warnings BadSignature Parameters are not called ‘env’ and ‘factory’

1.2. Interface Files 11

ProdSim, Release 0.1.0

1.2.2 Production functions

The functions input file is a Python script in which the user defines all of the functions used in the process input file.
The functions must be defined in the global scope and can be classified as follows

• Process function

• Source and sink

• Global function

• Distribution

Note: The following subsections describe only the structure and functionality. The use of these functions is presented
in chapter 3 (Examples).

Process function

All process functions referenced in the orders under the ‘function’ attribute must be defined in the function input file.
The process functions are used to represent machining or assembly operations, and each of these functions has four
arguments: env, item, machine, and factory. The following paragraphs explain what these arguments are used for:

env

The argument env points to the reference of the simulation environment of the simulation kernel. This reference can be
used to access the current simulation time via the attribute now to make the behavior of the process function dependent
on the simulation time.

current_sim_time: float = env.now

In addition, this reference is used to set the current process to the active without control state. For this purpose, a
simpy.Timeout event is yielded through env. The duration of the release of control is controlled by a time interval
passed in the process. The machine is blocked for this time such that, for example, maintenance or processing times
can be mapped.

Using a random delay
delay: float = normalvariate(10, 0.2)

Delays must be positive
yield env.timeout(abs(delay))

Note: Any number of timeout events can be yielded in a process function, whereas returns are only used to manage
the control flow if necessary.

item

Through the argument item, all references to workpieces involved in the process can be accessed. The following table
displays which information is available.

12 Chapter 1. Table of Contents

ProdSim, Release 0.1.0

Read Write Access
attributes + + item.attr_1 (e.g.)
id + - item.item_id
name + - item.name
reject + + item.reject

The following figure illustrates what the item access structures look like when the workpieces are nested or the demand
of the process is greater than one.

The item attribute always references the main workpiece of a process – itemA in this case. The figure shows that two
workpieces of type itemC were assembled into itemA. Whenever the quantity is greater than one, the references are
stored in lists. The access to an attribute (e.g., attr_1) of the first of the two itemC items looks as follows:

item.itemC[0].attr_1

If two (or more) workpieces of the same type were assembled in different assembly steps (see itemB), then access would
be made in a special way. Starting from the second workpiece, the references are supplemented by the prefix ‘_’ and a
continuing suffix. Thus, identical workpieces from different process steps can be differentiated. Assuming the middle
itemB was mounted second, access from its attributes (e.g., attr_2) would be as follows

accessing, the first assembled itemB
item.itemB.attr_2

accessing, the second assembled itemB
item._itemB2.attr_2

This structure can be nested as far as required. Thus, access to attributes (e.g., attr_3) of itemD is through itemB:

item.itemB.itemD.attr_3

machine

The machine argument can be used to reference the attributes of the machine on which the machining takes place. In
addition, each machine of a station has its own number.

Read Write Access
attributes + + machine.attr_1 (e.g.)
machine nr + - machine.nr
name + - machine.name

Since there are no nested structures as with the items, access is always via machine.attr_name.

factory

1.2. Interface Files 13

ProdSim, Release 0.1.0

All global attributes can be reached through the factory reference. These can also be assigned new values from process
functions.

factory.global_attr

However, the behavior of the global attributes is not so controllable since, particularly with stochastic processes, how
often or when a process function is called is not known. Therefore, the global attributes should only be set based on
global functions.

Source and Sink

Each job has exactly one source and one sink. Their tasks are to create workpieces in the production process and to
remove them after they have passed through the process. By matching the behavior of the source and sink, a push or
pull material flow can be configured in the production system.

A source or sink is defined as a function in the global scope in the function input file and must match the values of the
sink and source attributes of the orders. Such a function has exactly two arguments: env and factory. As described for
the processes, through these arguments the user can access the current simulation time and generate timeout events,
and access to global attributes is provided.

The following figure illustrates the logic of the source and sink functions. These functions can yield any number of
objects of type int or simpy.Timeout. As soon as an int value is yielded, the iteration over the source or sink (generator)
is aborted, and the yielded value corresponds to the number of workpieces that the source/sink generates/removes. If
no int value is yielded, then the iteration stops after the last yield and starts again.

If no sink is defined, then the default sink removes all workpieces from the corresponding end storage without any time
delay (if no assembly workpieces are taken from this store for another order). If workpieces are always to be ready
for production, an infinite source can be defined. For this purpose, the storage of the corresponding buffer memory
must be and an int value from the source must be yielded as the first value. Thus, the source always fills up the storage
without a time offset and stops when it is full.

Define an infinite source
def infinite_source(env, factory):

yield 1

Example 03 gives a concrete example of the interaction of an infinite source and sink with a demand curve over time.

14 Chapter 1. Table of Contents

ProdSim, Release 0.1.0

Global function

Global functions are specified via the functions attribute of the factory object and defined in the global scope of the
function input file. The task of the global functions is to control the behavior of the global attributes. Global functions
get two arguments: env and factory. Through env, as already shown with the process functions, timeout events can be
generated and the simulation time can be queried, while factory is used to obtain access to the global attributes to assign
new values to them depending on the time. The following figure presents the required structure of a global function
schematically:

First, the global attributes are assigned updated values; arbitrarily nested structures can be used. Subsequently, at least
one timeout event must be yielded. This is because the global functions are executed parallel to the simulation in an
infinite loop; without a timeout event, the simulated time would not progress.

Example 02 demonstrates how to assign a time profile to global variables. Example 03 illustrates how global functions
can be used to influence the behavior of the production system.

Distribution

The user-defined distributions that can be assigned to the attributes of the simulation objects are also defined in the
global scope of the function input file. For content reasons, the structure of these functions is introduced together with
the attribute distributions.

1.2.3 Attribute values

This section presents the possible distributions that can be assigned to the attributes of the simulation objects. A
distribution is defined in the form of a list. The first element of the list is always a string of length 1, which serves as
an identifier for the different distributions. The remaining attributes define the specific distribution parameters.

Distribution Identifier Parameters
User defined / /
Fix f [“f”, 𝜈]
Binary b [“b”, p]
Binomial i [“i”, n , p]
Normal n [“n”, 𝜇 , 𝜎]
Uniform u [“u”, a , b]
Poisson p [“p”, 𝜆]
Exponential e [“e”, 𝛽]
Lognormal l [“l”, 𝜇 , 𝜎]
Chisquare c [“c”, n]
Standard-t t [“t”, n]

1.2. Interface Files 15

ProdSim, Release 0.1.0

User defined

If the desired distribution is not predefined, then the user can define custom distribution functions. Such a function is
defined in the global scope of the function input file. The function’s name later serves as an identifier and thus must
have length 1 and not intersect with the predefined ones. Since the return value of such a function is assigned to the
attributes, the return type must be int or float. However, the defined function can have any number of arguments of any
type. In the distribution list, the arguments of this function are then passed in the same order.

Example:

The task is to define the following distribution function, which is not predefined, and then assign it to an attribute.

𝑃 (𝑋 = 𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2 ;𝑥 = 0.9
1
4 ;𝑥 = 1.8
1
8 ;𝑥 = 2.9
1
8 ;𝑥 = 6
0 ; 𝑒𝑙𝑠𝑒

It is possible to define a function that uses the values shown. Alternatively, a general function is defined that can
be used to map other arbitrary discrete distributions. For this purpose, x is used as a free identifier and choice from
numpy.random as distribution. The attributes of the function x are two lists that contain the probabilities and discrete
values.

from numpy.random import choice

def x(values, probabilities) -> Union[int, float]:
return choice(a=values, p=probabilities)

Now, this distribution needs to be added to the attribute.

"attr_1": ["x",[0.9,1.8,2.9,6],[0.5,0.25,0.125,0.125]]

Note: User-defined distributions are not checked by the inspector.

16 Chapter 1. Table of Contents

ProdSim, Release 0.1.0

Fixed

The identifier f indicates a fixed attribute value. The second parameter of the list specifies the fixed value 𝜈 that the
attribute takes. Like all other attributes, the types int and float are possible. Distribution:

Distribution:

𝑃 (𝑥 = 𝜈) = 1 , 𝜈 ∈ R

Example:

"prob_of_failure": ["f",4.34]

Overview:

Value Explanation
Identifier f
Additional parameter 𝜈 Value
Exceptions InvalidFormat List does not have length 2

InvalidType 𝜈 is not of type int or float

Binary

The identifier b indicates a binary attribute value. The second element of the list is the probability p that the attribute
takes the value 1. B(k,p) indicates the probability that an attribute takes the values k, given probability p.

Distribution:

𝐵(𝑘, 𝑝) =

{︂
𝑝𝑘(1 − 𝑝)1−𝑘 ; 𝑘 ∈ {0, 1}
0 ; 𝑒𝑙𝑠𝑒

, 𝑝 ∈ [0, 1]

Example:

"attr_1": ["b",0.2]

1.2. Interface Files 17

ProdSim, Release 0.1.0

Overview:

Value Explanation
Identifier b
Additional parameter p Success probability
Exceptions InvalidFormat List does not have length 2

InvalidType p is not of type int or float
InvalidValue p is not between 0.0 and 1.0

Binomial

The identifier i indicates a binomial attribute value. The second list element is the number of trails n, while the third is
the success probability p. B(k,p) indicates the probability that an attribute takes the values k, given probability p and
the number of trails n.

Distribution:

𝐵(𝑘, 𝑛, 𝑝) =

{︂ (︀
𝑛
𝑘

)︀
𝑝𝑘(1 − 𝑝)1−𝑘 ; 𝑘 ∈ {0, .., 𝑛}

0 ; 𝑒𝑙𝑠𝑒
, 𝑝 ∈ [0, 1]

Example:

"attr_1": ["i",5,0.4]

18 Chapter 1. Table of Contents

ProdSim, Release 0.1.0

Overview:

Value Explanation
Identifier i
Additional parameter n Number of trails
Additional parameter p Success probability for each trail
Exceptions InvalidFormat List does not have length 2

InvalidType n is not of type int
p is not of type int or float

InvalidValue n is not greater than zero
p is not between 0.0 and 1.0

Normal

The identifier n indicates a normally distributed attribute. The second list entry corresponds to the mean 𝜇 and the third
to the standard deviation 𝜎.

Distribution:

𝑝(𝑥) =
1√

2𝜋𝜎2
𝑒−

(𝑥−𝜇)2

2𝜎2 ; 𝑥, 𝜇 ∈ R, 𝜎 ≥ 0

Example:

"attr_1": ["n",4,2.5]

Overview:

Value Explanation
Identifier n
Additional parameter 𝜇 Mean

𝜎 Standard deviation
Exceptions InvalidFormat List does not have length 3

InvalidType 𝜇 or 𝜎 is not of type int or float
InvalidValue 𝜎 is smaller than zero

1.2. Interface Files 19

ProdSim, Release 0.1.0

Uniform

The identifier u indicates a uniform distributed attribute. The second list parameter a is the lower limit, while the third
b sets the upper interval limit. The limits can be integers or floating-point numbers.

Distribution:

𝑝(𝑥) =

{︂
1

𝑏−𝑎 ;𝑥 ∈ [𝑏, .., 𝑎)

0 ; 𝑒𝑙𝑠𝑒
; 𝑎, 𝑏 ∈ R, 𝑏 > 𝑎

Example:

"attr_1": ["u",1,2.34]

Overview:

Value Explanation
Identifier u
Additional parameter a lower bound

a upper bound
Exceptions InvalidFormat List does not have length 3

InvalidType a or b is not of type float or int
InvalidValue a is greater or equal b

Poisson

The identifier p indicates a Poisson-distributed attribute. The second list entry determines the rate 𝜆, which must be
type float or int and greater than or equal to zero. 𝑃 (𝑘, 𝜆)lambda`.

Distribution:

𝑃 (𝑘, 𝜆) =

{︂
𝜆𝑘𝑒−𝜆

𝑘! ; 𝑘 ∈ N≥0

0 ; 𝑒𝑙𝑠𝑒
, 𝜆 > 0

Example:

"attr_1": ["p",2.1]

20 Chapter 1. Table of Contents

ProdSim, Release 0.1.0

Overview:

Value Explanation
Identifier p
Additional parameter 𝜆 Rate
Exceptions InvalidFormat List does not have length 2

InvalidType 𝜆 is not of type float or int
InvalidValue 𝜆 is less than zero

Exponential

The identifier e indicates an exponential distributed attribute. The second list element is the scale 𝛽, which can be a
positive floating-point number.

Distribution:

𝑝(𝑥) =

{︂
1
𝛽 𝑒

− 𝑥
𝛽 ;𝑥 ≥ 0

0 ; 𝑒𝑙𝑠𝑒
, 𝛽 ∈ R>0

Example:

"attr_1": ["e",2.5]

Overview:

1.2. Interface Files 21

ProdSim, Release 0.1.0

Value Explanation
Identifier e
Additional parameter 𝛽 Scale
Exceptions InvalidFormat List does not have length 2

InvalidType 𝛽 is not of type float or int
InvalidValue 𝛽 is less or equal to zero

Note: Often the exponential function is also defined by the rate 𝜆 = 1
𝛽 , instead of the scale 𝛽. For more information

see numpy.random.exponential.

Lognormal

The identifier l indicates a lognormal distributed attribute. The second list entry corresponds to the mean 𝜇 and the
third to the standard deviation 𝜎; 𝜇 and 𝜎 must be of type int or float, while 𝜎 must also be greater than or equal to zero.

Distribution:

𝑝(𝑥) =

{︃
1

𝜎𝑥
√
2𝜋

𝑒−
(ln 𝑥−𝜇)2

2𝜎2 ;𝑥 > 0

0 ; 𝑒𝑙𝑠𝑒
, 𝜇 ∈ R, 𝜎 ∈ R>0

Example:

"attr_1": ["l",0,0.5]

Overview:

Value Explanation
Identifier l
Additional parameter 𝜇 Mean

𝜎 Standard deviation
Exceptions InvalidFormat List does not have length 3

InvalidType 𝜇 or 𝜎 is not of type float or int
InvalidValue 𝜎 is less than zero

22 Chapter 1. Table of Contents

https://numpy.org/doc/stable/reference/random/generated/numpy.random.exponential.html

ProdSim, Release 0.1.0

Chisquare

The identifier c indicates a chi-square distributed attribute. The second list entry determines the degrees of freedom n,
which must be a positive floating-point or integer.

Distribution:

𝑝𝑛(𝑥) =

{︃
1

2
𝑛
2 Γ(𝑛

2)
𝑥

𝑛
2 −1𝑒−

𝑥
2 ;𝑥 > 0

0 ; 𝑒𝑙𝑠𝑒
, 𝑥 ∈ R, 𝑛 ∈ R>0

Γ(𝑥) =

∫︁ −∞

0

𝑡𝑥−1𝑒−𝑡𝑑𝑡

Example:

"attr_1": ["c",2]

Overview:

Value Explanation
Identifier c
Additional parameter n Degrees of freedom
Exceptions InvalidFormat List does not have length 2

InvalidType n is not of type float or int
InvalidValue n is less than or equal to zero

Student-t

The identifier t indicates a student-t distributed attribute. The second list entry determines the degrees of freedom n,
which must be a positive floating-point or integer.

Distribution:

𝑝𝑛(𝑥) =
Γ(𝑛+1

2)

Γ(𝑛
2)
√
𝑛𝜋

(1 +
𝑥2

𝑛
)−

𝑛+1
2 , 𝑥 ∈ R, 𝑛 ∈ R>0

Γ(𝑥) =

∫︁ −∞

0

𝑡𝑥−1𝑒−𝑡𝑑𝑡

Example:

1.2. Interface Files 23

ProdSim, Release 0.1.0

"attr_1": ["t",4]

Overview:

Value Explanation
Identifier t
Additional parameter n Degrees of freedom
Exceptions InvalidFormat List does not have length 2

InvalidType n is not of type float or int
InvalidValue n is less than or equal to zero

1.2.4 Simulation output

Two predefined output formats are available: csv and hdf5. In both formats the output is provided in tabular form. In
the case of csv, a file is created for each simulation object (station, order, factory) whose data should be saved. In the
case of hdf5, a single file is created that contains a group for each simulation object.

The general structure of the output files is described first, followed by the specifics for the individual simulation objects
(station, order, factory).

General structure

The output files are in tabular form, to which rows are added during simulation. The first columns contain all user-
defined attributes and the following columns contain some object (station, order, factory) specific information.

For the tables of stations and orders it applies that for each processing that is carried out on a machine of a station, the
corresponding table of the order and the station are extended by a row that containing the relevant information regarding
the time point at which the respective interaction is completed. Whereas the factory table is extended by one row after
each call of a global function.

24 Chapter 1. Table of Contents

ProdSim, Release 0.1.0

Output station

The first columns contain the respective user-defined values of the station attributes. While the last two columns contain
the machine number and the current simulation time.

The machine number corresponds to the index of the machine of a station. The index starts for each station with zero
and can be read during the simulation to implement machine specific behavior.

The simulation time corresponds to the time point in which a machining or assembly operation was completed suc-
cessfully at a machine.

Output order

Similar to the output files of the other simulation objects, the first columns contain the values of the user-defined
attributes. The following columns contain the item ID, assembly comp, station ID and simulation time.

The item ID is a unique integer ID increasing throughout the simulation.

The column comp is only included if items of the order are assembled to items of another order in the process. The
column contains the unique item ID of the item to which the item referred to in the column is assembled. If the item is
not assembled in the first stage, the value nan will appear in the rows created before this assembly.

The station ID is the ID of the station at which the corresponding row was added. The station ID is assigned automat-
ically and corresponds to the index position (starting with 0) of the station in the input JSON file. Additionally, there
is the index -1. This index corresponds to the rows that are added directly after the creation of new items in the source.

The simulation time corresponds to the time point in which a item was processed successfully at a machine.

Output factory

The first columns contain the values of the user-defined global attributes. While the last column contains the simulation
time at which the attribute values of the attributes were recorded.

1.2. Interface Files 25

ProdSim, Release 0.1.0

Note: Different from the stations and the orders, a row is created after each execution of a global function. If there
are no global functions, no rows are added. In this case an empty global function can be created, which only yields
timeouts in required time steps.

1.3 Defining processes

In general, the structure of the process is described in a JSON file and the actions in a python-script (see Interface
Files). Since the initial setup of these files is time consuming and discourages the user from using ProdSim for the first
time, a web application for defining new processes is offered. When the structure of a process has been completely
defined and individual parameters need to be changed between simulation runs, it is easier to change them directly in
the corresponding JSON file instead of using the application.

The application is intended as an optional extension of Base-ProdSim and can be easily removed from the project during
individual ongoing development of ProdSim.

The following describes how the given fictitious production process can be modeled.

Note: The application is not part of the actual project and is still under development. Please report bugs and malfunc-
tions, as well as useful enhancement suggestions.

1.3.1 Start the application

To start the application the method define_process has to be called on a simulation environment.

from prodsim import Environment

if __name__ == '__main__':

Create simulation environment
(continues on next page)

26 Chapter 1. Table of Contents

ProdSim, Release 0.1.0

(continued from previous page)

env = Environment()

Start the application
env.define_process()

Copying the link into a browser (or clicking on the link, depending on your IDE) will open the following window.

1.3.2 Create and change order

In order to define a new process, it is recommended to start with creating all used orders and to use them as a base for
further operations. New orders can be created using the add order button. The following dialog opens.

1.3. Defining processes 27

ProdSim, Release 0.1.0

Thereby only the fields order name and source name must be filled with unique strings. All other fields are optional
and will be filled with the default values (see: interface files) if not filled.

Warning: The name of an order, as well as the number of stations, cannot be changed afterwards.

The number of stations corresponds to the number of process steps that the items of the corresponding order pass
through. For example, order a contains three stations because the second station is visited twice (see).

Once all orders have been defined, the graph is initially empty, because changes to the graph are only displayed when
the refresh graph button is clicked (internally, these changes are also saved without clicking the button). Clicking the
refresh button results in the following graph:

28 Chapter 1. Table of Contents

ProdSim, Release 0.1.0

To change individual properties of an order or to assign user-defined attributes to the items of this order, click on the
end storage (triangle) of this order in the graph and perform the needed changes in the opening dialog.

1.3.3 Change station

Similar to the orders, single stations can be clicked to change their properties. The opening dialog consists of three
areas. In the upper area, the core properties (name, capacity, storage, measurement) of the station can be changed.
In the second area, for each order in which the station is involved, the function that will be performed and whether
machining or assembly will be performed can be specified. In the third area, user-defined attributes may be assigned
to the station.

1.3. Defining processes 29

ProdSim, Release 0.1.0

For example, components of orders a and c are to be assembled at the third station of order b (see). This can be defined
in the dialog as follows:

30 Chapter 1. Table of Contents

ProdSim, Release 0.1.0

In addition, the second station in job a is to be used twice and job b and c should share a station. This can be realized
with the button combine stations. By clicking on the button the following dialog opens:

The names of the two stations that will be combined into a single station can be entered here. The station in the second
field will be deleted and replaced by the station in the first field. After carrying out the modifications described above,
the graph can be refreshed by clicking refresh graph. The changes made (assemblies and combined use of stations)
appear in the graph.

1.3. Defining processes 31

ProdSim, Release 0.1.0

1.3.4 Edit factory

Finally, the properties of the factory can be set. By clicking the button edit factory the following dialog opens.

All global functions and global attributes can be entered here.

32 Chapter 1. Table of Contents

ProdSim, Release 0.1.0

1.3.5 Create files

Once the entire process has been defined as required, the corresponding output files must be created and saved. To do
this, the following dialog can be opened by clicking the create files button.

The first field contains the name of the project and the second field the path (relative or absolute) to the directory where
the output files will be saved. Two files will be created. A JSON file containing the entire structure of the process and
a python-script containing all necessary functions (sources and sinks, process models and global functions). These
functions are empty and must be filled with the desired content before the simulation.

Warning: No data is cached during the definition of a process, so closing the window deletes all data.

1.4 Examples

In this chapter, the concrete use of the simulation program is presented through the use of examples. The aim of these
examples is not to represent realistic contexts. Instead, they represent as many aspects as possible and are chrono-
logically oriented to the later workflow. In addition, the examples are independent of each other in order to look up
individual functionalities selectively. The following table serves as a guide:

Example Focus
01 Defining a production layout

Inspecting input files
Visualizing input files

02 Defining machining functions
Using global functions

03 Defining an infinite source
Using global attributes
Using a pull process principle

04 Accessing assembly workpiece attributes
Rejecting items
Transforming and filtering output data

Note: The examples presented hereafter are provided as executable examples in the following folder:

/ProdSim/examples/

1.4. Examples 33

ProdSim, Release 0.1.0

1.4.1 Example 01: Gearbox

In this example, all steps are run through that should be conducted before each new simulation study. The focus is on
the actual procedure and less on the process itself. Therefore, the process functions, sources, sinks, and attributes of
the simulation objects are not filled with concrete content. Examples 02, 03, and 04 focus on the concrete modeling of
process functions and sources.

Process description

Before any simulation study, the production process should first be formally described. For assembly processes, the use
of a product tree is recommended to represent the product structure. The hierarchical relationship of the components
with each other and the individual quantities are displayed. As shown with the process functions,this simplifies the later
access to the workpiece attributes starting from the process functions. The following figure presents such a product
tree using the example of a gearbox:

In addition, the production process should be represented in the form of a network. All product components’ final stores
(triangles) and all processing and assembly stations (circles) are drawn in. Then, all production processes are drawn
in by directed edges between the stations. In addition, for assembly processes, the edges for the assembly workpieces
from the final stores to the assembly stations are inserted.

Define orders

After describing the production process, the input files are defined. First, the orders should be specified in the JSON
file. For this purpose, an order is created for each element from the product tree. Even if the elements gearbox and
gear_shaft are not physical products but rather only namespaces for the union of elementary components, then these
are also defined as orders. Thus, attributes can be assigned to them later.

The following procedure is recommended when defining an order:

1. Set general information (name, priority, storage, source, and sink)

34 Chapter 1. Table of Contents

ProdSim, Release 0.1.0

2. Describe the process of the order (station, function, demand, and component)

3. Add custom attributes

The corresponding orders are presented as follows. The storage capacity is limited to 10 for each order to avoid unin-
tentionally overfilling the computer memory.

{
"order": [
{
"name": "gearbox",
"storage": 10,
"source": "source_1",
"station": ["assemble_gb","quality_check"],
"function": ["assemble_gb","quality_check"],
"demand": [[1,8,1],2],
"component": [["housing","screw","gear_shaft"],[]]

},
{
"name": "housing",
"source": "source_1",
"storage": 10

},
{
"name": "screw",
"source": "source_1",
"storage": 10

},
{
"name": "gear_shaft",
"storage": 10,
"source": "source_1",
"station": ["assemble_gs"],
"function": ["assemble_gs"],
"demand": [[6,1]],
"component": [["gear","shaft"]]

},
{
"name": "gear",
"storage": 10,
"source": "source_2",
"station": ["heat_treatment"],
"function": ["heating"],
"demand": [8]

},
{
"name": "shaft",
"storage": 10,
"source": "source_2",
"station": ["lathe"],
"function": ["turning"]

}
]

}

1.4. Examples 35

ProdSim, Release 0.1.0

Define stations

Next, the stations can be defined. For this purpose, a station object is created for each station in the production process.
Since stations do not have as many properties as orders, the following procedure is recommended:

1. Set general information (name, storage, capacity, and measurement)

2. Add custom attributes

Here, the capacities are also limited in order not to overfill the computer memory. In addition, the station quality_check
is a pure measuring station where no attributes are changed. Therefore, measurement is set to true for this station.

{
"station": [
{
"name": "lathe",
"storage": 10

},
{
"name": "heat_treatment",
"storage": 10

},
{
"name": "assemble_gs",
"storage": 10

},
{
"name": "assemble_gb",
"storage": 10

},
{
"name": "quality_check",
"storage": 10,
"measurement": true

}
]

}

Define factory

Finally, the global attributes and global functions must be defined. For this purpose, all attributes and global functions
are assigned to the factory object.

As an example, two global attributes and one global function are defined as follows:

{
"factory": {
"glob_attr_1": ["f",0],
"glob_attr_2": ["n",1,0.1],
"function": ["glob_func_1"]

}
}

36 Chapter 1. Table of Contents

ProdSim, Release 0.1.0

Define functions

After the JSON file is set up, the Python script must be created. In this script, all previously used functions (sources,
sinks, process functions, global functions, and distributions) are defined. As this focuses on the procedure, these
functions are not assigned any content here. Therefore, examples 02, 03, and 04 should be viewed.

Inspect

After both input files are fully defined, the inspect() method can be called to identify errors that do not terminate
the program when reading the data. Before doing so, a simulation environment must be created and the corresponding
data read in.

from prodsim import Environment

if __name__ == '__main__':

Create simulation environment
env = Environment()

Read in the process data
env.read_files('.data/process.json', './data/function.py')

Inspect the process data
env.inspect()

In the following example, two errors were deliberately introduced in the JSON file. First, the signature of the process
function turning was changed, and the global function global_func_1 did not yield a timeout event. After calling
inspect, the output was as follows:

progress station: [====================] 100% quality_check
progress order: [====================] 100% shaft
factory: [====================] 100% factory
WARNINGS-------------------
Traceback (most recent call last):
File "/Users/user/prodsim/inspector.py", line 522, in __inspect_order
warnings.warn(

prodsim.exception.BadSignature: The signature of a process function should be␣
→˓(env, item, machine,

factory), but in the function 'turning' at least one argument has a different␣
→˓name.

EXCEPTIONS-----------------
Traceback (most recent call last):
File "/Users/user/prodsim/inspector.py", line 575, in __inspect_factory
raise prodsim.exception.InvalidFunction(

prodsim.exception.InvalidFunction: The function 'glob_func_1' from the
function file is not a generator function. A global function must yield at least␣

→˓one timeout-event.

Number of Warnings: 1

(continues on next page)

1.4. Examples 37

ProdSim, Release 0.1.0

(continued from previous page)

Number of Exceptions: 1

Visualize

Finally, the visualize method can be called to check if the process was defined correctly.

Visualize the process data
env.visualize()

This call leads to the following output:

Dash is running on http://127.0.0.1:8050/

* Serving Flask app 'ProdSim_app' (lazy loading)
* Environment: production
WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.

* Debug mode: on

By clicking on the link, a browser window opens that presents the interactive network graph.

38 Chapter 1. Table of Contents

ProdSim, Release 0.1.0

1.4.2 Example 02: Shaft

The focus of this example is the modeling of global and process functions. First, the process displayed is briefly
outlined. Then, the individual functions are described in detail. Finally, the simulation output is used to validate the
considerations.

Process description

Because the focus is on the functions, a simple process is deliberately used here. The process is a linear machining
line, which operates on a cycle time of one minute. Since the drilling process takes 2 minutes, the station uses two
machines to fulfill the cycle time. During this process, shafts are first drilled, turned, and then polished. The purpose
of the simulation study is to determine the course of the surface quality over time. Shafts are not rejected during the
process.

In addition, it is assumed that the process occurs in a factory with a temperature variation throughout the day, which
influences the polishing process.

Process function: drilling

First, the shafts are drilled. Each machine has a probability (0.15% in this example) that the drill will break
(drill_breakage). If this occurs, then the surface (surface) roughness will increase by an average of two units. In
addition, the machine used for the machining process is blocked for the duration of the machining (2 minutes) by
yielding a timeout event.

def drilling(env, item, machine, factory):

If the drill breaks the surface roughness increases
if random.random() < machine.drill_breakage:

item.surface += random.normalvariate(2, 0.1)

Blocking the drilling machine for machining time
yield env.timeout(2)

Process function: turning

The lathe has wear that increases with each machining operation. Since the wear affects the surface quality, the lathe
must be maintained whenever the wear reaches a certain level (1 in this example). This maintenance reduces the wear
completely but blocks the machine for 10 minutes. The correlation (fictitious and for illustrative purposes only) between
surface quality and machine wear is as follows:

∆𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 1.5 · (𝑤𝑒𝑎𝑟)2 − 2

The wear of the machine increases by 0.006 units on average for each machining operation, so an average of 167
machining operations are possible between two rounds of maintenance.

1.4. Examples 39

ProdSim, Release 0.1.0

def turning(env, item, machine, factory):

If the wear exceeds a certain limit, the machine is maintained
if machine.wear >= 1:

machine.wear = 0
yield env.timeout(5)

The roughness achievable during machining depends on the wear of the machine
item.surface += machine.wear**2 * 1.5

With each machining operation, the wear of the machine increases
machine.wear += abs(normalvariate(0.006,0.00018))

Blocking the lathe for machining time
yield env.timeout(1)

Process function: polishing

The polishing process can reduce roughness. If the temperature in the factory increases, then the polishing machine’s
potential to reduce the surface roughness decreases. The relationship between roughness and temperature is as follows:

∆𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = −(8 − 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 * 0.3)

def polishing(env, item, machine, factory):

The roughness will decrease the lower the temperature is.
item.surface -= 8 - factory.temperature * 0.3

yield env.timeout(1)

Global function: temperature

In the global function temperature_func, the profile of the temperature is described. In the simulated time (3 days), it is
assumed that the temperature profile (black) in the following figure is given every day. The global temperature should
correspond to the approximated course (red).

40 Chapter 1. Table of Contents

ProdSim, Release 0.1.0

The temperature values are stored in a dictionary (in the global scope) and assigned to the temperature in tempera-
ture_func. The simulated time is checked for equality in the function, which is only allowed here because the time
intervals in the timeout event are not random (otherwise a KeyError would occur).

This temperature profile is only intended to demonstrate the functionality. Of course, it is possible to define much finer
profiles when corresponding data sets are available or to add certain variations to the values.

temp_dict = {0: 19, 240: 18, 480: 20, 720: 23, 960: 22, 1200: 20}

def temperature_func(env, factory):

Determinate the current daytime
day_time = env.now % 1440

Set the new Temperature
factory.temperature = temp_dict[day_time]

Wait exactly 4 hours
yield env.timeout(240)

Start simulation

This code shows how the simulation is started. The simulation time is 4320 since this is exactly 3 days in the unit of
minutes. Since only the surface quality is of interest for the analysis, only the shafts are tracked. In addition, the column
item_id is removed during the export of the data (For demonstration purposes only).

from prodsim import Environment

if __name__ == '__main__':

Create simulation environment
env = Environemnt()

Read in the process files
env.real_files('./data/process.json', './data/function.py')

(continues on next page)

1.4. Examples 41

ProdSim, Release 0.1.0

(continued from previous page)

Start the simulation
env.simulate(sim_time=4320, track_components=['shaft'], progress_bar=True)

Export the simulation data
env.data_to_csv(path_to_wd='./output/', remove_column=['item_id'], keep_

→˓original=False)

Simulation output

The diagram below depicts the surface roughness that the shafts exhibit over the simulated time after processing at each
station.

The following aspects can be identified:

1. The six outliers visible in the three plots are caused by broken drills;

2. The zigzag shape that starts at the turning process step is caused by wear, which increases until maintenance
before abruptly decreasing;

3. The effect of temperature appears in the wave-like course (green). There are three cycles since exactly 3 days
were simulated.

The interruptions in production due to maintenance work at the lathe cannot be recognized. The reason for this is the
line thickness of the plots. The raw output data reveals the points in time at which the process is not active. This
time difference does not correspond exactly to the 10 minutes since the buffer stores are first filled before the process
succumbs.

42 Chapter 1. Table of Contents

ProdSim, Release 0.1.0

1.4.3 Example 03: Bolt

The purpose of this example is twofold: first, it sets up a pull-controlled material flow in the production system using
the interaction between the source and the sink of an order, and second, it shows that global attributes can control the
material flow in the production system.

Process description

To understand the interaction of source and sink more easily, a simple process was chosen. A forge station has five
forges, each of which produces six bolts per minute. These forges can be independently activated without start-up
times. The finished bolt storage can hold up to 5000 bolts.

This process runs 24 hours a day, and demand fluctuates throughout the day at unknown levels. The goal is to activate
the machines to ensure that demand can be met and productivity is adjusted to demand.

Source

Since the production process is controlled from the sink, it is necessary to ensure that enough input material is always
available. An infinite source achieves this.

def infinite_source(env, factory):
yield 1

An infinite source, where new input material is placed without delay, does not yield a timeout event. To enable a
simulation with an infinite source, two conditions must be fulfilled:

1. The capacity of the buffer storage that is to be filled must be limited; and

2. The buffer storage capacity must be at least the same as the demand of the process concerning the first process
step.

Note: Stores that are filled by an infinite source should not be filled by additional finite sources since the infinite
sources dominate them.

Global function

There are three global attributes:

1. number_bolts: The number of bolts in the final storage

2. active_machines: The number of currently active machines

3. max_active_machines: The maximum allowed number of currently active machines

1.4. Examples 43

ProdSim, Release 0.1.0

Since the demand (fictitious) is unknown and the production capacity is to be dynamically controlled, the number of
bolts in the final storage is used as a control variable.

𝑚𝑎𝑥_𝑎𝑐𝑡𝑖𝑣𝑒_𝑚𝑎𝑐ℎ𝑖𝑛𝑒 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

5 ;𝑛𝑢𝑚𝑏𝑒𝑟_𝑏𝑜𝑙𝑡𝑠 ∈ [0, 1000)
4 ;𝑛𝑢𝑚𝑏𝑒𝑟_𝑏𝑜𝑙𝑡𝑠 ∈ [1000, 2000)
3 ;𝑛𝑢𝑚𝑏𝑒𝑟_𝑏𝑜𝑙𝑡𝑠 ∈ [2000, 3000)
2 ;𝑛𝑢𝑚𝑏𝑒𝑟_𝑏𝑜𝑙𝑡𝑠 ∈ [3000, 4000)
1 ;𝑛𝑢𝑚𝑏𝑒𝑟_𝑏𝑜𝑙𝑡𝑠 ∈ [4000, 5000)
0 ;𝑛𝑢𝑚𝑏𝑒𝑟_𝑏𝑜𝑙𝑡𝑠 = 5000

The idea is that when the demand increases, the number of bolts in the final storage decreases. Thus, the lower the
number of bolts, the higher the number of active machines must be, such that the production capacity adjusts itself with
a slight time delay to the subsequent demand without having to know the demand. To make this work, the maximum
average demand must be smaller than the maximal production capacity of 30 (6 * 5).

control_logic = {1000: 5, 2000: 4, 3000: 3, 4000: 2, 5000: 1}

def global_control(env, factory):

Set max_active_machines_based on number_bolts
for quantity in control_logic.keys():

if factory.number_bolts < quantity:
factory.max_active_machines = control_logic[quantity]
break

factory.max_active_machines = 0

Update every time step (minute)
yield env.timeout(1)

Process function: forging

As the focus is on the material flow, no attributes of the bolts are considered in this process function. Before the forging
starts, whether the maximum number of active machines has been reached is checked. Since the cycle time is 1 minute,
this check is repeated every minute. If this check is passed, then the number of active machines is increased, and the
machine is blocked for the forging time. After the forging has finished, the global variable for storage filling is updated,
and the number of active machines is updated again.

def forging(env, item, machine, factory):

Check if production capacity is reached.
while True:

if factory.active_machines < factory.max_active_machines:
break

yield env.timeout(1)

Update currently active machines
factory.active_machines += 1

Block forge for forging time
yield env.timeout(1)

(continues on next page)

44 Chapter 1. Table of Contents

ProdSim, Release 0.1.0

(continued from previous page)

Update store quantity
factory.number_bolts += 6

Update currently active machines
factory.active_machines -= 1

Sink

It is assumed that the demand follows the given course (black) daily and undergoes certain variations. An approximation
is made by six partial intervals, which demonstrate a certain scatter (the 95% interval is indicated).

In addition, a large demand occurs for approximately 250 bolts approximately every 4 hours, which is also subject to
variation. The following function presents the realization of such a source behavior. In addition, the current inventory
in the final storage of the bolts is updated.

Defines the demand distribution over time
time_dict = {1: [0, 4], 2: [4, 8], 3: [8, 12], 4: [12, 16], 5: [16, 20], 6: [20, 24]}
demand_dict = {1: [7, 0.5], 2: [8, 0.7], 3: [20.5, 1], 4: [22, 1.7], 5: [20, 2.5], 6:␣
→˓[12, 1.2]}

def bolt_sink(env, factory):

demand = 0
day_time = env.now % 1440

Determine the standard demand
for index, time_interval in time_dict.items():

if time_interval[0] < day_time/60 < time_interval[1]:
dis = demand_dict[index]
demand += int(normalvariate(dis[0], dis[1]))
break

Determining the additional demand
if random() < 0.004:

demand += int(abs(normalvariate(250, 20)))
(continues on next page)

1.4. Examples 45

ProdSim, Release 0.1.0

(continued from previous page)

yield env.timeout(1)

Update number of bolts
factory.number_bolts -= demand

Just for output plotting purpose
factory.current_demand = demand

yield demand

Simulation output

The following figure depicts the course of the number of bolts in the final store as well as the demand. The additional
demands have been removed from the plot, and a moving average has been used for the demand. Due to oscillation
processes at the beginning, the simulated days 2–4 are shown.

The following aspects can be identified:

1. At midday, the demand is approximately 20, so three to four forges must be active to meet the demand. Therefore,
the average inventory at midday is 2000 (see global_control). At night, the demand is approximately eight, so
only one to two forges are required.

2. If there is an additional demand in the steady-state (e.g., at Sim. time = 2400), then the inventory level decreases
abruptly. This increases the number of active machines such that the required stock is built up again.

Note: Of course, this mechanism does not represent an efficiency control. The point of this example is rather the use
of global quantities to limit machine activity. For example, the currently available electricity can also serve as a limit
for the machines.

46 Chapter 1. Table of Contents

ProdSim, Release 0.1.0

1.4.4 Example 04: Toy figure

In this example, the characteristics of accessing assembly workpiece attributes are demonstrated. In addition, the usage
of the workpiece attributes reject and item_id is described. Finally, the output structure is presented along with how
the output can be transformed into the required format.

Process description

The production of plastic toy figures serves as an example process. The following product tree describes the compo-
nents, their quantities, and the assembly relationships.

The components arm, hand, leg and head are produced externally and do not have separate machining steps within the
process itself. The body component is injection-molded within the process. First, the components arm and hand are
assembled into the module upper_limb. In the following assembly process, all components are assembled in a figure.
Finally, quality is checked and incorrect figures are rejected.

The components are connected using ball-and-socket joints. Each joint has a diameter. Based on the difference in
diameters, the tension that occurs in the joint is determined. For example:

𝑡4 = 𝑡4(𝑑4, 𝑑3)

The diameters of the joints are the attributes of the respective components, whereas the resulting tensions are determined
during assembly and are therefore attributes of the modules or the final product. Since the figure is symmetrical, all
arms, hands, and legs have the same attributes with individual characteristics.

1.4. Examples 47

ProdSim, Release 0.1.0

Assemble function

This subsection describes the assembly function that is called at the station assemble_figure. The argument item of
the function references the workpiece in whose process path the station from which the process function was called
is located (figure). This attribute can be used to access all assembled workpieces that are assembled before or at the
station under consideration. According to the following relationship, the tension is calculated and stored in attributes
t4 to t8 of the figure workpiece for each ball joint:

𝑡𝑖(𝑑𝑖, 𝑑𝑗) = (𝑑𝑗 − 𝑑𝑖 − 2)3 + 20

As an example, tension t4 is used to describe the access of the required diameters; t4 depends on d3 of the right arm
and on d4 of the body. Since item refers to figure, the module upper_limb must be accessed first. Since there are two
upper_limbs, one of the two must be selected. By definition, it is declared that the first element corresponds to the
right upper_limb. Since d3 is an attribute of the arm, the upper_limb must be used to access the arm and then d3. This
results in the following:

d3_1 = item.upper_limb[0].arm.d3

The structure is similar for the diameter d4. First, item (or figure) must be used to refer to body. Since d4 is an attribute
of body, d4 can be accessed as follows:

d4 = item.body.d4

The two stresses t2 have already been determined during the assembly of the component upper_limb.

def assemble_figure(env, item, machine, factory):

Get the diameters of the assembled items
d3_1 = item.upper_limb[0].arm.d3
d3_2 = item.upper_limb[1].arm.d3
d9_1 = item.leg[0].d9

(continues on next page)

48 Chapter 1. Table of Contents

ProdSim, Release 0.1.0

(continued from previous page)

d9_2 = item.leg[1].d9
d10 = item.head.d10

def get_t(d1, d2):
return (d2 - d1 - 2)**3 + 20

Calculate the tension
item.t4 = get_t(item.body.d4, d3_1)
item.t5 = get_t(item.body.d5, d9_1)
item.t6 = get_t(item.body.d6, d9_2)
item.t7 = get_t(item.body.d7, d3_2)
item.t8 = get_t(item.body.d8, d10)

Block the machine for the assembly time
yield env.timeout(1)

Quality check

During quality control, all figures that do not fulfill the quality requirements are rejected. The criterion used here is
the tension, which must lie within a specified interval to be able to rotate the corresponding components against each
other. For each tension, a check is performed to ensure that it lies within the specified interval. If not, then the reject
attribute is set to True. Consequently, this item (including all assembled items) is removed from the process and is not
added to the following store.

In addition, the id of the figures is stored in the global attribute rejected_id to identify them more easily. In the following,
a method for identifying rejected items without global attributes is described.

def quality_check(env, item, machine, factory):

Limits for the tension
t_min = 17.0
t_max = 23.0

def is_reject(t):
if t <= t_min or t >= t_max:

item.reject = True
factory.rejected_id = item.item_id
return True

return False

Reject items and update profiling attributes
if is_reject(item.t4):

machine.r4 += 1
if is_reject(item.t5):

machine.r5 += 1
if is_reject(item.t6):

machine.r6 += 1
if is_reject(item.t7):

machine.r7 += 1
if is_reject(item.t8):

(continues on next page)

1.4. Examples 49

ProdSim, Release 0.1.0

(continued from previous page)

machine.r8 += 1
if is_reject(item.upper_limb[0].t2):

machine.r2_1 += 1
if is_reject(item.upper_limb[1].t2):

machine.r2_2 += 1

Block quality machine
yield env.timeout(1)

The diameters of the joints are distributed as follows:

𝑑𝑖 ∼ 𝑁(40, 0.4) , 𝑖 ∈ {1, 3, 9, 10}

𝑑𝑖 ∼ 𝑁(42, 0.4) , 𝑖 ∈ {4, .., 7}

For d8, a normal distribution is also assumed, but the mean diameter continues to increase due to wear during the
injection. After 1500 injection processes, the mold is replaced so that the diameter starts again at 40. The following
figure visualizes the behavior on the basis of the number of rejects corresponding to the rejection reasons r6, r7, and
r8.

Note: If no attributes are changed at a station (e.g., quality_check), then setting the attribute measurement to true is
recommended because the workpiece attributes will not be tracked at this station. This reduces the data usage.

Merge output data

As a standard, the simulation data for each simulation object (order, station, factory) is saved in its own file. The
following text describes how these files can be merged in order to collect all information (d1,..,d10,t2,t4,..,t8) concerning
a single figure for all figures in a time series. Data merging according to the underlying assembly structure is performed
via the columns item_id and comp. Each order output whose workpieces represent assembly workpieces of at least one
other order contains the column comp, which contains the item_id of the item for which the assembly item is assembled.

The following cutout of the csv file arm.csv indicates that the arm with the item_id 81 is mounted to an upper_limb
item with the item_id 86. Likewise, arm 84 is assembled to upper_limb 87.

50 Chapter 1. Table of Contents

ProdSim, Release 0.1.0

In the file hand.csv, there are the two arms (item_ids: 82 and 85), which are mounted to the upper_limbs with the
item_ids 86 and 87.

Finally, in the file upper_limb.csv, the two workpieces with item_ids 86 and 87 can be found. They are mounted on a
figure with the item_id 77.

Based on the textually described context, the assembly structures can be automatically tracked. The following figure
provides an overview of the required steps.

1. First, the csv files must be filtered so that only the rows containing items at the last station (or at the station where
the current assembly structure is to be traced) are left

2. All columns that are not required are removed. Only the attribute columns are kept in files representing sub
components, while the comp column is chosen as the index. In files belonging to main items, the item_id is used
as the index, and all columns except the comp and attribute columns are deleted.

3. The main file is connected to the sub file (any number of sub files can be used) via the index (the concat method
from the pandas library is recommended).

4. If the main item is assembled further, the comp column must subsequently be selected as the index to connect
the new file again.

1.4. Examples 51

ProdSim, Release 0.1.0

A particular detail must be taken into account. If the demand is greater than one, then the comp column contains the
item_id of the main item multiple times (e.g., upper_limb.csv - item_id: 77). The following figure demonstrates how
this case is handled. The file is split off (e.g., with the groupby method from the pandas library) using the comp column.
Thus, the attributes are numbered to be able to differentiate them later. This ensures that the index set comp is unique
and can be used to merge the files.

The following code block shows how to switch a csv file to state 1 from the first figure. The get_df method already
considers the case of demands greater than one. Thus, the partial data sets are returned in a list.

def get_df(name: str, num_main_args: int, sub: bool = True, amount: int = None):

index_col, labels = 'item_id', ['station_id']
if sub:

index_col, labels = 'comp', ['station_id', 'item_id']

set 'index_col' as row index, and remove the column 'time' for all assemble objects␣
→˓by usecols (+3)

iter_csv = pd.read_csv(path + name + '.csv', usecols=[i for i in range(
num_main_args + 3)], iterator=True, chunksize=10_000, index_col=index_col)

build DataFrame and remove the columns 'labels'
temp_df = pd.concat([chunk[chunk['station_id'] == station_id] for chunk in iter_

→˓csv]).drop(labels=labels, axis=1)
(continues on next page)

52 Chapter 1. Table of Contents

ProdSim, Release 0.1.0

(continued from previous page)

if there are multiple objects split the dataframe an return them as a list
if amount is None:

return temp_df
return [temp_df.groupby('comp').nth(i).add_suffix('-%s' % i) for i in range(amount)]

The files created in this manner must be nested by hand according to the assembly structure. The following code
block presents steps 2 and 3 for the final assembly step of a figure. Since the figure is the final assembly layer, the
comp column does not exist in this file and cannot be set as the index. The used DataFrame upper_limb is previously
generated according to the same logic.

figure = get_df("figure", 5, sub=False)
head = get_df("head", 1)
body = get_df("body", 5)
legs = get_df("leg", 1, amount=2)

figure = pd.concat([figure, head, legs[0], legs[1], upper_limb[0], upper_limb[1], body],␣
→˓axis=1)
del head, legs, upper_limb, body

The following file depicts the results of this transformation. The row marked in yellow corresponds to the figure with
item_id 77. When the values of this column are compared with the elementary csv files shown at the beginning, the
values are observed to have been combined correctly. The file created in this way contains all 21 attributes of a figure
per row.

Identify rejected items

Finally, how rejected workpieces can be identified is described. In the quality_check function, the item_id of rejected
items is stored globally. In the last step of the concatenation process described above, this global index set can be used
to filter the items whose item_id appears in this set. Similarly, if the difference set is formed instead of the intersection
set, nonrejected items can be obtained.

Alternatively, global attributes can be avoided if further process steps follow after the station at which workpieces are
declared to be rejects. First, the item_ids of all workpieces created by a source (station_id = -1) are summarized in a
set. Analogously, an index set can be created that contains all item_ids of items that have passed a specific station. By
forming the difference set, one receives all item_ids of workpieces that represent rejects. With this set, as described
above, the rejected workpieces can be identified.

1.4. Examples 53

ProdSim, Release 0.1.0

54 Chapter 1. Table of Contents

PYTHON MODULE INDEX

e
environment, 3
estimator, 5

55

ProdSim, Release 0.1.0

56 Python Module Index

INDEX

C
clear_env() (environment.Environment method), 3

D
data_to_csv() (environment.Environment method), 3
data_to_hdf5() (environment.Environment method), 3
define_process() (environment.Environment

method), 4

E
environment

module, 3
Environment (class in environment), 3
est_attribute() (estimator.Estimator method), 5
est_function() (estimator.Estimator method), 5
est_item() (estimator.Estimator method), 6
est_station() (estimator.Estimator method), 6
estimator

module, 5
Estimator (class in estimator), 5

I
inspect() (environment.Environment method), 4

M
module

environment, 3
estimator, 5

R
read_files() (environment.Environment method), 4

S
simulate() (environment.Environment method), 4

V
visualize() (environment.Environment method), 5

57

	Table of Contents
	API Reference
	Environment
	Estimator

	Interface Files
	Production structure
	Order
	Station
	Factory

	Production functions
	Process function
	Source and Sink
	Global function
	Distribution

	Attribute values
	User defined
	Fixed
	Binary
	Binomial
	Normal
	Uniform
	Poisson
	Exponential
	Lognormal
	Chisquare
	Student-t

	Simulation output
	General structure
	Output station
	Output order
	Output factory

	Defining processes
	Start the application
	Create and change order
	Change station
	Edit factory
	Create files

	Examples
	Example 01: Gearbox
	Process description
	Define orders
	Define stations
	Define factory
	Define functions
	Inspect
	Visualize

	Example 02: Shaft
	Process description
	Process function: drilling
	Process function: turning
	Process function: polishing
	Global function: temperature
	Start simulation
	Simulation output

	Example 03: Bolt
	Process description
	Source
	Global function
	Process function: forging
	Sink
	Simulation output

	Example 04: Toy figure
	Process description
	Assemble function
	Quality check
	Merge output data
	Identify rejected items

	Python Module Index
	Index

