

 [image: logo]

Overview

ProdSim is a process-based discrete event simulation for production environments based on the
SimPy [https://simpy.readthedocs.io/en/latest/] framework. The package is designed to generate large high-resolution
synthetic production data sets.

The characteristics of a production system are represented by three system components, namely machines, workpieces, and
a factory. These components interact with one another on the following three system layers:

	logistics

	stations

	processes

The bottom level, namely the process level, models elementary assembly or machining operations in which the properties
and behavior of the system components can be influenced. The middle level, namely the station level, maps the system’s
buffer stores and groups machines together into stations according to a workshop or line production. At the top level,
namely the layout level, workpieces are created by sources and removed by sinks. In addition, the material flow of
workpieces through the production process is described.

Users must define production processes in two input files. In a JSON file, all orders, stations, and the factory are
defined. In a Python script, the users specify the assembly and processing functions, the behavior of the sources and
sinks, as well as global functions and user-defined distributions for attribute values.

Additionally, the package offers functionalities for the visualization of passed production processes, verification of
input files, and methods for estimating the simulation runtime

The following code displays the typical usage of the package:

from prodsim import Environment

def main():

 # Create simulation Environment
 env = Environment()

 # Read the input files
 env.read_files('./data/process.json', './data/function.py')

 # Inspect and visualize the input data (optional)
 # env.inspect()
 # env.visualize()

 # Start the simulation
 env.simulate(sim_time=10_000, progress_bar=True, max_memory=5, bit_type=64)

 # export the output data
 env.data_to_csv("./data/output/", remove_column=['item_id'], keep_original=True)

if __name__ == '__main__':

 main()

How this documentation should be used:

The API Reference chapter provides an overview of all methods and their attributes as well as the
corresponding data types. The Interface Files chapter describes the structure to be followed by the
input files. These two chapters are designed as a reference for specific content. In the final
Examples chapter, examples are chronologically matched to the later simulation study and contain all
elementary features of the package. Since some modeling techniques are also explained, studying these examples is
recommended before conducting one’s own simulation study.

Table of Contents

	API Reference
	Environment

	Estimator

	Interface Files
	Production structure

	Production functions

	Attribute values

	Simulation output

	Defining processes
	Start the application

	Create and change order

	Change station

	Edit factory

	Create files

	Examples
	Example 01: Gearbox

	Example 02: Shaft

	Example 03: Bolt

	Example 04: Toy figure

API Reference

Environment

The Environment class represents the central element of the library. All offered simulation functionalities are
available to the user in the methods through an object of this class. In addition, the environment controls all
program-internal method calls as well as access to the process data in the background.

	
class environment.Environment

	Execution Environment for the event-based production simulation.

	
clear_env() → None

	Reinitialize the environment object between two different simulation runs.

After calling this method, a new process must be read in.

	
data_to_csv(path_to_wd: str, remove_column: Optional[List[str]] = None, keep_original: bool = True) → None

	Exports the simulation data to csv files.

	Parameters

	
	path_to_wd (str) – Path to the target directory

	remove_column (List[str], optional) – List of labels whose columns are removed before saving

	keep_original (bool, optional) – Keep an additional original file without removed columns

	Raises

	MissingData – simulate was not called before

Note

If the passed folder does not exist, then the program creates it.

	
data_to_hdf5(path_to_wd: str, file_name: str) → None

	Exports the simulation data to hdf5 files.

Creates a hdf5 file in which each simulation object is stored a group. The metadata (‘header’) of each
simulation object is stored in an attribute and the simulation data in datasets of size max_memory.

	Parameters

	
	path_to_wd (str) – Path to the target directory

	file_name (str) – Name of the hdf5 file

	Raises

	MissingData – simulate was not called before

Note

If the passed folder does not exist, then the program creates it.

	
define_process() → None

	Launches an interactive web application to define a new production process.
This method initiates a local development app on a flask server on localhoast:8050.

	
inspect() → None

	Checks the passed input files for errors of logical and syntactic nature.

	Raises

	MissingData – read_files was not called, or the data read in does not contain the arrays
‘order’ and ‘station’

Note

This method is only a support and does not guarantee an error-free simulation run.

	
read_files(path_data_file: str, path_function_file: str) → None

	Reads in the process input files.

	Parameters

	
	path_data_file (str) – Path to the JSON file with the process data

	path_function_file (str) – Path to the py file with the function definitions

	Raises

	
	FileNotFoundError – Files could not be found

	MissingParameter – The ‘order’ or ‘station’ array is not defined in the process file or an order or
station object has no name

	UndefinedFunction – One of the referenced functions cannot be found in the function file

	UndefinedObject – One of the referenced orders or stations cannot be found in the data file

	InvalidType – The component list has an element that is not of type list, or the capacity of an order or
station is not of type int

	InvalidValue – The capacity of an order or station is not greater than zero

	NotSupportedParameter – One of the values of the user-defined factory attributes has an undefined
identifier

	
simulate(sim_time: int, track_components: Optional[List[str]] = None, progress_bar: bool = False, max_memory: float = 2, bit_type: int = 32) → None

	Starts the simulation run.

	Parameters

	
	sim_time (int) – Simulated time

	track_components (List[str], optional) – List of strings representing components whose process data is to be stored

	progress_bar (bool, optional) – Specifies whether a progress bar should be displayed

	max_memory (float, optional) – Maximal size of a single a numpy data array [Mb]

	bit_type (int, optional) – Bit type with which the values are stored

	Raises

	MissingData – read_files was not called or the data read in does not contain ‘order’ or ‘station’

	
visualize() → None

	Launches an interactive web application to display the input data.
This method initiates a local development app on a flask server on localhoast:8050.

	Raises

	MissingData – read_files was not called or the data read in does not contain the ‘order’ or ‘station’
array

Note

This method initiates a local development app on a flask server on localhoast:8050.

Estimator

The Estimator class offers some functionalities through which the runtime behavior of the simulation can be estimated.
Alternatively, a reference simulation with a short simulation time can be performed, and the measured simulation time
can be scaled proportionally. However, the function est_function is especially useful for developing suitable process
functions.

	
class estimator.Estimator

	Estimator for estimating the expected simulation time.

	
est_attribute(distribution: List[tuple], num_station: int, track: bool) → float

	Estimates the time caused by additional attributes.

	Parameters

	
	distribution (List[tuple]) – List of attributes to be estimated

	num_station (int) – Number of stations that workpieces of the order under consideration pass through

	track (bool) – Indicates whether the order is being tracked

	Returns

	Estimated additional simulation time for additional attributes

	Return type

	float

	
est_function(function: Callable, num_station: int, track: bool, imports: Optional[List[str]] = None, objects: Optional[Dict[str, object]] = None, item_attributes: Optional[Dict[str, list]] = None, machine_attributes: Optional[Dict[str, list]] = None, factory_attributes: Optional[Dict[str, list]] = None) → float

	Estimates the time caused by a specific function.

	Parameters

	
	function (Callable) – List of attributes to be estimated

	num_station (int) – Number of stations at which the process function is called

	track (bool) – Indicates whether the order is being tracked

	imports (List[str], optional) – List of all used import statements

	objects (List[object], optional) – List of all used objects

	item_attributes (Dict[str, list], optional) – List of all item attributes used in the function

	machine_attributes (Dict[str, list], optional) – List of all machine attributes used in the function

	factory_attributes (Dict[str, list], optional) – List of all factory attributes used in the function

	Raises

	InvalidFunction – Function name is ‘function1’

	Returns

	Estimated time for a single function call

	Return type

	float

	
est_item(track: bool) → float

	Estimates the time for creating a workpiece.

	Parameters

	track (bool) – Indicates whether the order is being tracked

	Returns

	Estimated simulation time for creating a workpiece without attributes

	Return type

	float

	
est_station(track: bool) → float

	Estimates the time caused by the recursive process logic.

	Parameters

	track (bool) – Indicates whether the order is being tracked

	Returns

	Estimated simulation time for simply passing through stations (without functions and item attributes)

	Return type

	float

Interface Files

This chapter defines the structure of the two input interface files and the options available to the user for mapping
production processes. First, the elements of the JSON file describing the simulation objects are presented, followed by
the different function types of the py file.

	Data file

	Function file

A further section describes the possible distributions used to initialize the attributes of simulation objects when they
are created.

	Attribute values

Note

A subset of the exceptions listed in the following sections will only be thrown when the inspect method is called.

Production structure

Each production process is defined in its own JSON file. This file contains a top-level object with two required
attributes and one optional one. The structure of these attributes is described as follows:

	Order

	Station

	Factory

Order

The Order attribute is an attribute of the top-level production process object and is of the type JSON Array. This array
contains JSON objects and defines an order that combines all of the information about a particular order. The attributes
of an order are differentiated into predefined and user-defined attributes. Any attribute whose name is not predefined
is considered a user-defined attribute. In this section, all predefined attributes are described in detail. The possible
characteristics of the user-defined attributes are described in a separate section. section.

Note

Only the individual parameters are described below. In example 01 , a concrete example of this file is
given.

name

The name is a required parameter of the data type String. It will later serve as an identifier for the different
jobs and should therefore be unique.

	
	Value

	Explanation

	Optional

	no

	

	Default value

	/

	

	Exceptions

	MissingParameter

	If name was not set

	Warnings

	BadType

	If name isn ot a string

Warning

Since the suffix ‘_x’ references identical assembly workpieces that are assembled in different process steps (see
process function), the name cannot have such a suffix.

priority

The priority is an optional integer parameter. It determines the processing order when multiple jobs request the same
scarce resource. If no priorities are set, then the program determines its order. A small value corresponds to a high
priority. If several orders do not use the same station, then the priorities have no meaning.

	
	Value

	Explanation

	Optional

	yes

	

	Default value

	10

	

	Exceptions

	InvalidType

	If priority is not an integer

	
	InvalidValue

	If priority is less than one

storage

The storage is an optional integer parameter that specifies the storage capacity of the final store of an order. The
storage is a piece value.

Note

Even though this parameter is optional, it should always be set if there is no perfect understanding of the process;
otherwise, situations may occur where an increasing number of item objects are stored in stores over the simulation
time. This would lead to memory overload and slow the simulation speed.

	
	Value

	Explanation

	Optional

	yes

	

	Default value

	infinite

	

	Exceptions

	InvalidType

	If capacity is not an integer

	
	InvalidValue

	If capacity is less than one

source

The source is a required parameter of type string. The function from the production functions
file with the corresponding name is assigned to this order.

	
	Value

	Explanation

	Optional

	yes

	

	Default value

	/

	

	Exceptions

	UndefinedFunction

	Function is not defined in the passed file

	
	InvalidFunction

	Function is not a generator function

	
	InvalidSignature

	Function does not have exactly two arguments

	
	InvalidYield

	Yielded object is not of type int or Timeout

	
	InfiniteLoop

	Source contains an infinite loop

	
	MissingParameter

	No source was defined

	Warnings

	BadSignature

	The signature is not (‘env’, ‘factory’)

	
	BadYield

	Source does not yield a timeout event

sink

The sink is an optional parameter of type string. This order is assigned the function from the
production functions file with the corresponding name. If workpieces of this order represent
assembly workpieces concerning another process, then the default sink will never be active. If this is not the case,
then it removes all workpieces from the final store without a time delay.

	
	Value

	Explanation

	Optional

	yes

	

	Default value

	infinite source

	If item is not part of an assembly process

	
	no source

	If item is part of an assembly process

	Exceptions

	UndefinedFunction

	Function is not defined in the passed file

	
	InvalidFunction

	Function is not a generator function

	
	InvalidSignature

	Function does not have exactly two arguments

	
	InvalidYield

	Yielded object is not of type int or Timeout

	
	InfiniteLoop

	Source contains an infinite loop

	Warnings

	BadSignature

	The signature is not (‘env’, ‘factory’)

	
	BadYield

	Source does not yield a timeout event

station

The station attribute is an optional attribute of type Array. This array contains strings that represent the names of
stations in the order in which items of this order visit them. The default value is an empty array, which means that the
source places new workpieces directly into the final store (reflecting, for example, the retrieval of external assembly
workpieces).

	
	Value

	Explanation

	Optional

	yes

	

	Default value

	[]

	

	Exceptions

	UndefinedObject

	No station is defined with this name

Note

The program does not throw exceptions related to the array’s length because the size of this array is considered a
reference for the length of the other arrays.

function

The function attribute is an optional attribute of type array. It contains strings that correspond to the names of
functions defined in the process functions file. The index position determines the connection of
process functions to stations.

	
	Value

	Explanation

	Optional

	yes

	

	Default value

	[]

	

	Exceptions

	UndefinedFunction

	No function with this name is defined

	
	InvalidSignature

	Function does not have four arguments

	
	MissingParameter

	Number of functions does not match the number of stations

	Warnings

	BadSignature

	At least one argument has a bad name

	
	BadYield

	Function does not yield a simpy.Timeout object

demand

The demand parameter is an optional parameter of type array. The index position of the entries connects them to the
stations from the station’s list. If a station performs an assembly or a pure machining process in a given process step,
then it determines the structure of the entries of the array. In machining at the station with index position i, the
i-th element of the demand array is an integer that determines the demand of this station. Another array of integers
at the corresponding index position in an assembly, which determines the number of individual assembly pieces. The
component attribute specifies which workpieces are used in an assembly. The default value is a list
with only 1s and the length of the station list. Thus, the default case represents a pure line production.

	
	Value

	Explanation

	Optional

	yes

	

	Default value

	[1, 1, .., 1]

	Only possible if there is no assembly

	Exceptions

	MissingParameter

	Number of elements does not match the number of stations

	
	InvalidType

	If the list contains different objects than int or list of int

	
	InvalidValue

	Integer element in the list is not greater than zero

Note

No exceptions are thrown if the inner structure does not fit around the attribute component because demand serves as
a reference to avoid redundant error messages.

component

The component attribute is an optional attribute of type array. The inner structure of this array corresponds to that
of the demand demand attribute. In the case of pure processing, there is an empty array at the
corresponding index position. In assembly, the inner array contains strings that correspond to the names of orders and
specify what type the assembly workpieces should be. The default value is an array with only empty arrays; thus, as with
the attribute demand, a pure line production is represented.

	
	Value

	Explanation

	Optional

	yes

	

	Default value

	[[], [], .., []]

	Only possible if there is no assembly

	Exceptions

	MissingParameter

	Number of elements does not match the number of stations or the length of the assembly process list does not
match the length of the assembly demand list

	
	UndefinedObject

	No item is defined with this name

	
	InvalidValue

	Structure does not correspond to the demand structure

	
	InvalidType

	List contains object with a type other than ‘list’

Station

The station attribute is an attribute of the top-level production process object and is of the type JSON Array. This
array contains JSON objects that define a station that combines all of the information about a particular station. The
attributes of a station are differentiated into predefined and user-defined attributes. Every attribute whose name is
not predefined is considered a user-defined attribute. This section describes all predefined attributes in detail. The
possible characteristics of the user-defined attributes are described in a separate section.

Note

Only the individual parameters are described below. In example 01, a concrete example of this file is
given.

name

The name is a required parameter of type string. It is used later to identify station objects and therefore must be
unique.

	
	Value

	Explanation

	Optional

	no

	

	Default value

	/

	

	Exceptions

	MissingParameter

	If name was not set

	Warnings

	BadType

	If name is not a string

capacity

The capacity is an optional integer parameter. It specifies the number of machines that the corresponding station has
and thus serves to map the production type of the shop floor production. The default value is one and it thus rather
represents a line production process. If a station has several machines, then one of the free machines is selected
randomly before machining at this station.

	
	Value

	Explanation

	Optional

	yes

	

	Default value

	1

	

	Exceptions

	InvalidType

	If capacity is not an integer

	
	InvalidValue

	If capacity is less than one

storage

The storage attribute is optional and of type integer. It describes the storage capacity of the buffer storage of a
station. This attribute is a unit value.

Note

Even though this parameter is optional, it should always be set if a perfect understanding of the process does not
exist; otherwise, an arbitrary accumulation of numerous objects could occur in the memory, which would slow the
simulation arbitrarily.

	
	Value

	Explanation

	Optional

	yes

	

	Default value

	infinite

	

	Exceptions

	InvalidType

	If storage is not an integer

	
	InvalidValue

	If storage is less than one

measurement

The measurement attribute is optional and of type Boolean. If a station is a measurement or quality control station
where the item attributes are not changed, then this attribute should be set to ‘true’. The effect is that workpieces
will not be tracked at this station, regardless of whether they are tracked at other stations.

	
	Value

	Explanation

	Optional

	yes

	

	Default value

	false

	

	Exceptions

	InvalidType

	If measurement is not a Boolean

Factory

The factory attribute is an optional attribute of the top-level production process object. Unlike the order and station
attributes, it is not an array but rather a single JSON object. This object contains all global attributes that any
process function, sink, source, and global function can retrieve. All of these attributes are user-definable. The rules
that apply to these attributes are described in the ‘Attribute values’ section. In addition, the
factory object has a predefined attribute, which is described below.

function

The function is an optional attribute of type array. This array contains strings that correspond to the global functions
from the functions file. The global variables are controlled from these functions, whose structure is described in more
detail in the ‘function file section.

	
	Value

	Explanation

	Optional

	yes

	

	Default value

	[]

	

	Exceptions

	UndefinedFunction

	No function with this name is defined

	
	InvalidFunction

	Function is not a generator function

	
	InvalidSignature

	Function does not have exactly two argument

	
	InvalidYield

	Function yielded an object that is not of type

	Warnings

	BadSignature

	Parameters are not called ‘env’ and ‘factory’

Production functions

The functions input file is a Python script in which the user defines all of the functions used in the process input
file. The functions must be defined in the global scope and can be classified as follows

	Process function

	Source and sink

	Global function

	Distribution

Note

The following subsections describe only the structure and functionality. The use of these functions is presented in
chapter 3 (Examples).

Process function

All process functions referenced in the orders under the ‘function’ attribute must be defined in the function input
file. The process functions are used to represent machining or assembly operations, and each of these functions has four
arguments: env, item, machine, and factory. The following paragraphs explain what these arguments are used for:

env

The argument env points to the reference of the simulation environment of the simulation kernel. This reference can be
used to access the current simulation time via the attribute now to make the behavior of the process function dependent
on the simulation time.

current_sim_time: float = env.now

In addition, this reference is used to set the current process to the active without control state. For this purpose,
a simpy.Timeout event is yielded through env. The duration of the release of control is controlled by a time
interval passed in the process. The machine is blocked for this time such that, for example, maintenance or processing
times can be mapped.

Using a random delay
delay: float = normalvariate(10, 0.2)

Delays must be positive
yield env.timeout(abs(delay))

Note

Any number of timeout events can be yielded in a process function, whereas returns are only used to manage the
control flow if necessary.

item

Through the argument item, all references to workpieces involved in the process can be accessed. The following table
displays which information is available.

	
	Read

	Write

	Access

	attributes

	+

	+

	item.attr_1 (e.g.)

	id

	+

	-

	item.item_id

	name

	+

	-

	item.name

	reject

	+

	+

	item.reject

The following figure illustrates what the item access structures look like when the workpieces are nested or the demand
of the process is greater than one.

[image: distribution_normal]
The item attribute always references the main workpiece of a process – itemA in this case. The figure shows that two
workpieces of type itemC were assembled into itemA. Whenever the quantity is greater than one, the references are stored
in lists. The access to an attribute (e.g., attr_1) of the first of the two itemC items looks as follows:

item.itemC[0].attr_1

If two (or more) workpieces of the same type were assembled in different assembly steps (see itemB), then access would
be made in a special way. Starting from the second workpiece, the references are supplemented by the prefix ‘_’ and a
continuing suffix. Thus, identical workpieces from different process steps can be differentiated. Assuming the middle
itemB was mounted second, access from its attributes (e.g., attr_2) would be as follows

accessing, the first assembled itemB
item.itemB.attr_2

accessing, the second assembled itemB
item._itemB2.attr_2

This structure can be nested as far as required. Thus, access to attributes (e.g., attr_3) of itemD is through
itemB:

item.itemB.itemD.attr_3

machine

The machine argument can be used to reference the attributes of the machine on which the machining takes place. In
addition, each machine of a station has its own number.

	
	Read

	Write

	Access

	attributes

	+

	+

	machine.attr_1 (e.g.)

	machine nr

	+

	-

	machine.nr

	name

	+

	-

	machine.name

Since there are no nested structures as with the items, access is always via machine.attr_name.

factory

All global attributes can be reached through the factory reference. These can also be assigned new values from process
functions.

factory.global_attr

However, the behavior of the global attributes is not so controllable since, particularly with stochastic processes, how
often or when a process function is called is not known. Therefore, the global attributes should only be set based on
global functions.

Source and Sink

Each job has exactly one source and one sink. Their tasks are to create workpieces in the production process and to
remove them after they have passed through the process. By matching the behavior of the source and sink, a push or pull
material flow can be configured in the production system.

A source or sink is defined as a function in the global scope in the function input file and must match the values of
the sink and source attributes of the orders. Such a function has exactly two arguments: env and factory. As
described for the processes, through these arguments the user can access the current
simulation time and generate timeout events, and access to global attributes is provided.

The following figure illustrates the logic of the source and sink functions. These functions can yield any number of
objects of type int or simpy.Timeout. As soon as an int value is yielded, the iteration over the source or sink
(generator) is aborted, and the yielded value corresponds to the number of workpieces that the source/sink
generates/removes. If no int value is yielded, then the iteration stops after the last yield and starts again.

[image: distribution_normal]
If no sink is defined, then the default sink removes all workpieces from the corresponding end storage without any time
delay (if no assembly workpieces are taken from this store for another order). If workpieces are always to be ready for
production, an infinite source can be defined. For this purpose, the storage of the corresponding buffer memory must be
and an int value from the source must be yielded as the first value. Thus, the source always fills up the storage
without a time offset and stops when it is full.

Define an infinite source
def infinite_source(env, factory):
 yield 1

Example 03 gives a concrete example of the interaction of an infinite source and sink with a demand
curve over time.

Global function

Global functions are specified via the functions attribute of the factory object and defined in the global scope of
the function input file. The task of the global functions is to control the behavior of the global attributes. Global
functions get two arguments: env and factory. Through env, as already shown with the
process functions, timeout events can be generated and the simulation time can be queried,
while factory is used to obtain access to the global attributes to assign new values to them depending on the time. The
following figure presents the required structure of a global function schematically:

[image: distribution_normal]
First, the global attributes are assigned updated values; arbitrarily nested structures can be used. Subsequently, at
least one timeout event must be yielded. This is because the global functions are executed parallel to the simulation in
an infinite loop; without a timeout event, the simulated time would not progress.

Example 02 demonstrates how to assign a time profile to global variables. Example 03 illustrates
how global functions can be used to influence the behavior of the production system.

Distribution

The user-defined distributions that can be assigned to the attributes of the simulation objects are also defined in the
global scope of the function input file. For content reasons, the structure of these functions is introduced together
with the attribute distributions.

Attribute values

This section presents the possible distributions that can be assigned to the attributes of the simulation objects. A
distribution is defined in the form of a list. The first element of the list is always a string of length 1, which
serves as an identifier for the different distributions. The remaining attributes define the specific distribution
parameters.

	Distribution

	Identifier

	Parameters

	User defined

	/

	/

	Fix

	f

	[“f”, \(\nu\)]

	Binary

	b

	[“b”, p]

	Binomial

	i

	[“i”, n , p]

	Normal

	n

	[“n”, \(\mu\) , \(\sigma\)]

	Uniform

	u

	[“u”, a , b]

	Poisson

	p

	[“p”, \(\lambda\)]

	Exponential

	e

	[“e”, \(\beta\)]

	Lognormal

	l

	[“l”, \(\mu\) , \(\sigma\)]

	Chisquare

	c

	[“c”, n]

	Standard-t

	t

	[“t”, n]

User defined

If the desired distribution is not predefined, then the user can define custom distribution functions. Such a function
is defined in the global scope of the function input file. The function’s name later serves as an
identifier and thus must have length 1 and not intersect with the predefined ones. Since the return value of such a
function is assigned to the attributes, the return type must be int or float. However, the defined function can have any
number of arguments of any type. In the distribution list, the arguments of this function are then passed in the same
order.

Example:

The task is to define the following distribution function, which is not predefined, and then assign it to an attribute.

\[\begin{split}P(X=x) = \left\{\begin{array}{ll} \frac{1}{2} & ;x=0.9 \\
 \frac{1}{4} & ;x=1.8 \\
 \frac{1}{8} & ;x=2.9 \\
 \frac{1}{8} & ;x=6 \\
 0 & ;else\\
 \end{array}\right.\end{split}\]

It is possible to define a function that uses the values shown. Alternatively, a general function is defined that can be
used to map other arbitrary discrete distributions. For this purpose, x is used as a free identifier and choice from
numpy.random as distribution. The attributes of the function x are two lists that contain the probabilities and discrete
values.

from numpy.random import choice

def x(values, probabilities) -> Union[int, float]:
 return choice(a=values, p=probabilities)

Now, this distribution needs to be added to the attribute.

"attr_1": ["x",[0.9,1.8,2.9,6],[0.5,0.25,0.125,0.125]]

[image: distribution_normal]

Note

User-defined distributions are not checked by the inspector.

Fixed

The identifier f indicates a fixed attribute value. The second parameter of the list specifies the fixed value
\(\nu\) that the attribute takes. Like all other attributes, the types int and float are possible. Distribution:

Distribution:

\[P(x=\nu)=1\ ,\hspace{0.2cm} \nu\in\mathbb{R}\]

Example:

"prob_of_failure": ["f",4.34]

[image: distribution_normal]
Overview:

	
	Value

	Explanation

	Identifier

	f

	

	Additional parameter

	\(\nu\)

	Value

	Exceptions

	InvalidFormat

	List does not have length 2

	
	InvalidType

	\(\nu\) is not of type int or float

Binary

The identifier b indicates a binary attribute value. The second element of the list is the probability p that
the attribute takes the value 1. B(k,p) indicates the probability that an attribute takes the values k, given
probability p.

Distribution:

\[\begin{split}B(k,p) = \left\{\begin{array}{ll} p^k(1-p)^{1-k} & ;k\in\lbrace0,1\rbrace \\
 0 & ;else\end{array}\right.\ ,\hspace{0.2cm} p\in\lbrack0,1\rbrack\end{split}\]

Example:

"attr_1": ["b",0.2]

[image: distribution_binary]
Overview:

	
	Value

	Explanation

	Identifier

	b

	

	Additional parameter

	p

	Success probability

	Exceptions

	InvalidFormat

	List does not have length 2

	
	InvalidType

	p is not of type int or float

	
	InvalidValue

	p is not between 0.0 and 1.0

Binomial

The identifier i indicates a binomial attribute value. The second list element is the number of trails n, while the
third is the success probability p. B(k,p) indicates the probability that an attribute takes the values k, given
probability p and the number of trails n.

Distribution:

\[\begin{split}B(k,n,p) = \left\{\begin{array}{ll}\binom{n}{k} p^k(1-p)^{1-k} & ;k\in\lbrace0,..,n\rbrace \\
 0 & ;else\end{array}\right.\ ,\hspace{0.2cm} p\in\lbrack0,1\rbrack\end{split}\]

Example:

"attr_1": ["i",5,0.4]

[image: distribution_binomial]
Overview:

	
	Value

	Explanation

	Identifier

	i

	

	Additional parameter

	n

	Number of trails

	Additional parameter

	p

	Success probability for each trail

	Exceptions

	InvalidFormat

	List does not have length 2

	
	InvalidType

	n is not of type int

	
	
	p is not of type int or float

	
	InvalidValue

	n is not greater than zero

	
	
	p is not between 0.0 and 1.0

Normal

The identifier n indicates a normally distributed attribute. The second list entry corresponds to the mean
\(\mu\) and the third to the standard deviation \(\sigma\).

Distribution:

\[p(x)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\ ;\hspace{0.2cm} x,\mu\in\mathbb{R},\ \sigma\ge 0\]

Example:

"attr_1": ["n",4,2.5]

[image: distribution_normal]
Overview:

	
	Value

	Explanation

	Identifier

	n

	

	Additional parameter

	\(\mu\)

	Mean

	
	\(\sigma\)

	Standard deviation

	Exceptions

	InvalidFormat

	List does not have length 3

	
	InvalidType

	\(\mu\) or \(\sigma\) is not of type int or float

	
	InvalidValue

	\(\sigma\) is smaller than zero

Uniform

The identifier u indicates a uniform distributed attribute. The second list parameter a is the lower limit, while
the third b sets the upper interval limit. The limits can be integers or floating-point numbers.

Distribution:

\[\begin{split}p(x) = \left\{\begin{array}{ll}\frac{1}{b-a} & ;x\in\lbrack b,..,a) \\
 0 & ;else\end{array}\right.\ ;\hspace{0.2cm} a,b\in\mathbb{R},\ b>a\end{split}\]

Example:

"attr_1": ["u",1,2.34]

[image: distribution_normal]
Overview:

	
	Value

	Explanation

	Identifier

	u

	

	Additional parameter

	a

	lower bound

	
	a

	upper bound

	Exceptions

	InvalidFormat

	List does not have length 3

	
	InvalidType

	a or b is not of type float or int

	
	InvalidValue

	a is greater or equal b

Poisson

The identifier p indicates a Poisson-distributed attribute. The second list entry determines the rate \(\lambda\),
which must be type float or int and greater than or equal to zero. \(P(k,\lambda)\)lambda`.

Distribution:

\[\begin{split}P(k,\lambda) = \left\{\begin{array}{ll}\frac{\lambda^ke^{-\lambda}}{k!} & ;k\in\mathbb{N}_{\ge0} \\
 0 & ;else\end{array}\right.\ ,\hspace{0.2cm} \lambda>0\end{split}\]

Example:

"attr_1": ["p",2.1]

[image: distribution_normal]
Overview:

	
	Value

	Explanation

	Identifier

	p

	

	Additional parameter

	\(\lambda\)

	Rate

	Exceptions

	InvalidFormat

	List does not have length 2

	
	InvalidType

	\(\lambda\) is not of type float or int

	
	InvalidValue

	\(\lambda\) is less than zero

Exponential

The identifier e indicates an exponential distributed attribute. The second list element is the scale \(\beta\),
which can be a positive floating-point number.

Distribution:

\[\begin{split}p(x) = \left\{\begin{array}{ll} \frac{1}{\beta} e^{-\frac{x}{\beta}} & ;x \ge 0 \\
 0 & ;else\end{array}\right.\ ,\hspace{0.2cm} \beta\in\mathbb{R}_{>0}\end{split}\]

Example:

"attr_1": ["e",2.5]

[image: distribution_normal]
Overview:

	
	Value

	Explanation

	Identifier

	e

	

	Additional parameter

	\(\beta\)

	Scale

	Exceptions

	InvalidFormat

	List does not have length 2

	
	InvalidType

	\(\beta\) is not of type float or int

	
	InvalidValue

	\(\beta\) is less or equal to zero

Note

Often the exponential function is also defined by the rate \(\lambda=\frac{1}{\beta}\), instead of the scale
\(\beta\). For more information see
numpy.random.exponential [https://numpy.org/doc/stable/reference/random/generated/numpy.random.exponential.html].

Lognormal

The identifier l indicates a lognormal distributed attribute. The second list entry corresponds to the mean
\(\mu\) and the third to the standard deviation \(\sigma\); \(\mu\) and \(\sigma\) must be of type int
or float, while \(\sigma\) must also be greater than or equal to zero.

Distribution:

\[\begin{split}p(x) = \left\{\begin{array}{ll} \frac{1}{\sigma x \sqrt{2\pi}}e^{-\frac{(\ln{x}-\mu)^{2}}{2\sigma^{2}}} & ;x > 0 \\
 0 & ;else\end{array}\right.\ ,\hspace{0.2cm} \mu\in\mathbb{R},\ \sigma\in\mathbb{R}_{>0}\end{split}\]

Example:

"attr_1": ["l",0,0.5]

[image: distribution_normal]
Overview:

	
	Value

	Explanation

	Identifier

	l

	

	Additional parameter

	\(\mu\)

	Mean

	
	\(\sigma\)

	Standard deviation

	Exceptions

	InvalidFormat

	List does not have length 3

	
	InvalidType

	\(\mu\) or \(\sigma\) is not of type float or int

	
	InvalidValue

	\(\sigma\) is less than zero

Chisquare

The identifier c indicates a chi-square distributed attribute. The second list entry determines the degrees of freedom
n, which must be a positive floating-point or integer.

Distribution:

\[\begin{split}p_{n}(x) = \left\{\begin{array}{ll} \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}x^{\frac{n}{2}-1}e^{-\frac{x}{2}} & ;x > 0 \\
 0 & ;else\end{array}\right.\ ,\hspace{0.2cm} x\in\mathbb{R},\ n\in\mathbb{R}_{>0}\end{split}\]

\[\Gamma(x)=\int^{-\infty}_{0}t^{x-1}e^{-t}dt\]

Example:

"attr_1": ["c",2]

[image: distribution_normal]
Overview:

	
	Value

	Explanation

	Identifier

	c

	

	Additional parameter

	n

	Degrees of freedom

	Exceptions

	InvalidFormat

	List does not have length 2

	
	InvalidType

	n is not of type float or int

	
	InvalidValue

	n is less than or equal to zero

Student-t

The identifier t indicates a student-t distributed attribute. The second list entry determines the degrees of freedom
n, which must be a positive floating-point or integer.

Distribution:

\[p_n(x)=\frac{\Gamma(\frac{n+1}{2})}{\Gamma(\frac{n}{2})\sqrt{n\pi}}(1+\frac{x^2}{n})^{-\frac{n+1}{2}}\ ,\hspace{0.2cm} x\in\mathbb{R},\ n\in\mathbb{R}_{>0}\]

\[\Gamma(x)=\int^{-\infty}_{0}t^{x-1}e^{-t}dt\]

Example:

"attr_1": ["t",4]

[image: distribution_normal]
Overview:

	
	Value

	Explanation

	Identifier

	t

	

	Additional parameter

	n

	Degrees of freedom

	Exceptions

	InvalidFormat

	List does not have length 2

	
	InvalidType

	n is not of type float or int

	
	InvalidValue

	n is less than or equal to zero

Simulation output

Two predefined output formats are available: csv and hdf5. In both formats the output is provided in tabular form. In
the case of csv, a file is created for each simulation object (station, order, factory) whose data should be saved. In
the case of hdf5, a single file is created that contains a group for each simulation object.

The general structure of the output files is described first, followed by the specifics for
the individual simulation objects (station, order,
factory).

General structure

The output files are in tabular form, to which rows are added during simulation. The first columns contain all
user-defined attributes and the following columns contain some object (station, order, factory) specific information.

For the tables of stations and orders it applies that for each processing that is carried out on a machine of a
station, the corresponding table of the order and the station are extended by a row that containing the relevant
information regarding the time point at which the respective interaction is completed. Whereas the factory table is
extended by one row after each call of a global function.

Output station

The first columns contain the respective user-defined values of the station attributes. While the last two columns
contain the machine number and the current simulation time.

[image: output_file_station]
The machine number corresponds to the index of the machine of a station. The index starts for each station with
zero and can be read during the simulation to implement machine specific behavior.

The simulation time corresponds to the time point in which a machining or assembly operation was completed
successfully at a machine.

Output order

Similar to the output files of the other simulation objects, the first columns contain the values of the user-defined
attributes. The following columns contain the item ID, assembly comp, station ID and simulation time.

[image: output_file_station]
The item ID is a unique integer ID increasing throughout the simulation.

The column comp is only included if items of the order are assembled to items of another order in the process. The
column contains the unique item ID of the item to which the item referred to in the column is assembled. If the item
is not assembled in the first stage, the value nan will appear in the rows created before this assembly.

The station ID is the ID of the station at which the corresponding row was added. The station ID is assigned
automatically and corresponds to the index position (starting with 0) of the station in the input JSON file.
Additionally, there is the index -1. This index corresponds to the rows that are added directly after the creation of
new items in the source.

The simulation time corresponds to the time point in which a item was processed successfully at a machine.

Output factory

The first columns contain the values of the user-defined global attributes. While the last column contains the
simulation time at which the attribute values of the attributes were recorded.

[image: output_file_station]

Note

Different from the stations and the orders, a row is created after each execution of a global function. If there are
no global functions, no rows are added. In this case an empty global function can be created, which only yields
timeouts in required time steps.

Defining processes

In general, the structure of the process is described in a JSON file and the actions in a python-script (see
Interface Files). Since the initial setup of these files is time consuming and discourages the user from using ProdSim
for the first time, a web application for defining new processes is offered. When the structure of a process has been
completely defined and individual parameters need to be changed between simulation runs, it is easier to change them
directly in the corresponding JSON file instead of using the application.

The application is intended as an optional extension of Base-ProdSim and can be easily removed from the project during
individual ongoing development of ProdSim.

The following describes how the given fictitious production process can be modeled.

[image: distribution_normal]

Note

The application is not part of the actual project and is still under development. Please report bugs and
malfunctions, as well as useful enhancement suggestions.

Start the application

To start the application the method define_process has to be called on a simulation environment.

from prodsim import Environment

if __name__ == '__main__':

 # Create simulation environment
 env = Environment()

 # Start the application
 env.define_process()

Copying the link into a browser (or clicking on the link, depending on your IDE) will open the following window.

[image: distribution_normal]

Create and change order

In order to define a new process, it is recommended to start with creating all used orders and to use them as a base for
further operations. New orders can be created using the add order button. The following dialog opens.

[image: distribution_normal]
Thereby only the fields order name and source name must be filled with unique strings. All other fields are
optional and will be filled with the default values (see: interface files) if not filled.

Warning

The name of an order, as well as the number of stations, cannot be changed afterwards.

The number of stations corresponds to the number of process steps that the items of the corresponding order pass
through. For example, order a contains three stations because the second station is visited twice (see).

Once all orders have been defined, the graph is initially empty, because changes to the graph are only displayed when
the refresh graph button is clicked (internally, these changes are also saved without clicking the button). Clicking
the refresh button results in the following graph:

[image: distribution_normal]
To change individual properties of an order or to assign user-defined attributes to the items of this order, click on
the end storage (triangle) of this order in the graph and perform the needed changes in the opening dialog.

[image: distribution_normal]

Change station

Similar to the orders, single stations can be clicked to change their properties. The opening dialog consists of three
areas. In the upper area, the core properties (name, capacity, storage, measurement) of the station can be changed. In
the second area, for each order in which the station is involved, the function that will be performed and whether
machining or assembly will be performed can be specified. In the third area, user-defined attributes may be assigned to
the station.

[image: distribution_normal]
For example, components of orders a and c are to be assembled at the third station of order b (see). This
can be defined in the dialog as follows:

[image: distribution_normal]
In addition, the second station in job a is to be used twice and job b and c should share a station. This can be
realized with the button combine stations. By clicking on the button the following dialog opens:

[image: distribution_normal]
The names of the two stations that will be combined into a single station can be entered here. The station in the
second field will be deleted and replaced by the station in the first field. After carrying out the modifications
described above, the graph can be refreshed by clicking refresh graph. The changes made (assemblies and combined use
of stations) appear in the graph.

[image: distribution_normal]

Edit factory

Finally, the properties of the factory can be set. By clicking the button edit factory the following dialog opens.

[image: distribution_nor]
All global functions and global attributes can be entered here.

Create files

Once the entire process has been defined as required, the corresponding output files must be created and saved. To do
this, the following dialog can be opened by clicking the create files button.

[image: distribution_nor]
The first field contains the name of the project and the second field the path (relative or absolute) to the directory
where the output files will be saved. Two files will be created. A JSON file containing the entire structure of the
process and a python-script containing all necessary functions (sources and sinks, process models and global functions).
These functions are empty and must be filled with the desired content before the simulation.

Warning

No data is cached during the definition of a process, so closing the window deletes all data.

Examples

In this chapter, the concrete use of the simulation program is presented through the use of examples. The aim of these
examples is not to represent realistic contexts. Instead, they represent as many aspects as possible and are
chronologically oriented to the later workflow. In addition, the examples are independent of each other in order to look
up individual functionalities selectively. The following table serves as a guide:

	Example

	Focus

	01

	Defining a production layout

Inspecting input files

Visualizing input files

	02

	Defining machining functions

Using global functions

	03

	Defining an infinite source

Using global attributes

Using a pull process principle

	04

	Accessing assembly workpiece attributes

Rejecting items

Transforming and filtering output data

Note

The examples presented hereafter are provided as executable examples in the following folder:

/ProdSim/examples/

Example 01: Gearbox

In this example, all steps are run through that should be conducted before each new simulation study. The focus is on
the actual procedure and less on the process itself. Therefore, the process functions, sources, sinks, and attributes of
the simulation objects are not filled with concrete content. Examples 02, 03, and
04 focus on the concrete modeling of process functions and sources.

Process description

Before any simulation study, the production process should first be formally described. For assembly processes, the use
of a product tree is recommended to represent the product structure. The hierarchical relationship of the components
with each other and the individual quantities are displayed. As shown with the
process functions,this simplifies the later access to the workpiece attributes starting from
the process functions. The following figure presents such a product tree using the example of a gearbox:

[image: distribution_normal]
In addition, the production process should be represented in the form of a network. All product components’ final stores
(triangles) and all processing and assembly stations (circles) are drawn in. Then, all production processes are drawn in
by directed edges between the stations. In addition, for assembly processes, the edges for the assembly workpieces from
the final stores to the assembly stations are inserted.

[image: distribution_normal]

Define orders

After describing the production process, the input files are defined. First, the orders should be specified in the JSON
file. For this purpose, an order is created for each element from the product tree. Even if the elements gearbox and
gear_shaft are not physical products but rather only namespaces for the union of elementary components, then these are
also defined as orders. Thus, attributes can be assigned to them later.

The following procedure is recommended when defining an order:

	Set general information (name, priority, storage, source, and sink)

	Describe the process of the order (station, function, demand, and component)

	Add custom attributes

The corresponding orders are presented as follows. The storage capacity is limited to 10 for each order to avoid
unintentionally overfilling the computer memory.

{
 "order": [
 {
 "name": "gearbox",
 "storage": 10,
 "source": "source_1",
 "station": ["assemble_gb","quality_check"],
 "function": ["assemble_gb","quality_check"],
 "demand": [[1,8,1],2],
 "component": [["housing","screw","gear_shaft"],[]]
 },
 {
 "name": "housing",
 "source": "source_1",
 "storage": 10
 },
 {
 "name": "screw",
 "source": "source_1",
 "storage": 10
 },
 {
 "name": "gear_shaft",
 "storage": 10,
 "source": "source_1",
 "station": ["assemble_gs"],
 "function": ["assemble_gs"],
 "demand": [[6,1]],
 "component": [["gear","shaft"]]
 },
 {
 "name": "gear",
 "storage": 10,
 "source": "source_2",
 "station": ["heat_treatment"],
 "function": ["heating"],
 "demand": [8]
 },
 {
 "name": "shaft",
 "storage": 10,
 "source": "source_2",
 "station": ["lathe"],
 "function": ["turning"]
 }
]
}

Define stations

Next, the stations can be defined. For this purpose, a station object is created for each station in the production
process. Since stations do not have as many properties as orders, the following procedure is recommended:

	Set general information (name, storage, capacity, and measurement)

	Add custom attributes

Here, the capacities are also limited in order not to overfill the computer memory. In addition, the station
quality_check is a pure measuring station where no attributes are changed. Therefore, measurement is set to true
for this station.

{
 "station": [
 {
 "name": "lathe",
 "storage": 10
 },
 {
 "name": "heat_treatment",
 "storage": 10
 },
 {
 "name": "assemble_gs",
 "storage": 10
 },
 {
 "name": "assemble_gb",
 "storage": 10
 },
 {
 "name": "quality_check",
 "storage": 10,
 "measurement": true
 }
]
}

Define factory

Finally, the global attributes and global functions must be defined. For this purpose, all attributes and global
functions are assigned to the factory object.

As an example, two global attributes and one global function are defined as follows:

{
 "factory": {
 "glob_attr_1": ["f",0],
 "glob_attr_2": ["n",1,0.1],
 "function": ["glob_func_1"]
 }
}

Define functions

After the JSON file is set up, the Python script must be created. In this script, all previously used functions
(sources, sinks, process functions, global functions, and distributions) are defined. As this focuses on the procedure,
these functions are not assigned any content here. Therefore, examples 02,
03, and 04 should be viewed.

Inspect

After both input files are fully defined, the inspect() method can be called to identify errors that do not
terminate the program when reading the data. Before doing so, a simulation environment must be created and the
corresponding data read in.

from prodsim import Environment

if __name__ == '__main__':

 # Create simulation environment
 env = Environment()

 # Read in the process data
 env.read_files('.data/process.json', './data/function.py')

 # Inspect the process data
 env.inspect()

In the following example, two errors were deliberately introduced in the JSON file. First, the signature of the process
function turning was changed, and the global function global_func_1 did not yield a timeout event. After calling
inspect, the output was as follows:

progress station: [====================] 100% quality_check
progress order: [====================] 100% shaft
factory: [====================] 100% factory
WARNINGS-------------------
Traceback (most recent call last):
 File "/Users/user/prodsim/inspector.py", line 522, in __inspect_order
 warnings.warn(
 prodsim.exception.BadSignature: The signature of a process function should be (env, item, machine,
 factory), but in the function 'turning' at least one argument has a different name.

EXCEPTIONS-----------------
Traceback (most recent call last):
 File "/Users/user/prodsim/inspector.py", line 575, in __inspect_factory
 raise prodsim.exception.InvalidFunction(
 prodsim.exception.InvalidFunction: The function 'glob_func_1' from the
 function file is not a generator function. A global function must yield at least one timeout-event.

Number of Warnings: 1
Number of Exceptions: 1

Visualize

Finally, the visualize method can be called to check if the process was defined correctly.

Visualize the process data
env.visualize()

This call leads to the following output:

Dash is running on http://127.0.0.1:8050/

 * Serving Flask app 'ProdSim_app' (lazy loading)
 * Environment: production
 WARNING: This is a development server. Do not use it in a production deployment.
 Use a production WSGI server instead.
 * Debug mode: on

By clicking on the link, a browser window opens that presents the interactive network graph.

[image: distribution_normal]

Example 02: Shaft

The focus of this example is the modeling of global and process functions. First, the process displayed is briefly
outlined. Then, the individual functions are described in detail. Finally, the simulation output is used to validate the
considerations.

Process description

Because the focus is on the functions, a simple process is deliberately used here. The process is a linear machining
line, which operates on a cycle time of one minute. Since the drilling process takes 2 minutes, the station uses two
machines to fulfill the cycle time. During this process, shafts are first drilled, turned, and then polished. The
purpose of the simulation study is to determine the course of the surface quality over time. Shafts are not rejected
during the process.

[image: ../../_images/shaft_process.png]
In addition, it is assumed that the process occurs in a factory with a temperature variation throughout the day, which
influences the polishing process.

Process function: drilling

First, the shafts are drilled. Each machine has a probability (0.15% in this example) that the drill will break
(drill_breakage). If this occurs, then the surface (surface) roughness will increase by an average of two units. In
addition, the machine used for the machining process is blocked for the duration of the machining (2 minutes) by
yielding a timeout event.

def drilling(env, item, machine, factory):

 # If the drill breaks the surface roughness increases
 if random.random() < machine.drill_breakage:
 item.surface += random.normalvariate(2, 0.1)

 # Blocking the drilling machine for machining time
 yield env.timeout(2)

Process function: turning

The lathe has wear that increases with each machining operation. Since the wear affects the surface quality, the lathe
must be maintained whenever the wear reaches a certain level (1 in this example). This maintenance reduces the wear
completely but blocks the machine for 10 minutes. The correlation (fictitious and for illustrative purposes only)
between surface quality and machine wear is as follows:

\[\Delta surface = 1.5\cdot(wear)^{2} - 2\]

The wear of the machine increases by 0.006 units on average for each machining operation, so an average of 167 machining
operations are possible between two rounds of maintenance.

def turning(env, item, machine, factory):

 # If the wear exceeds a certain limit, the machine is maintained
 if machine.wear >= 1:
 machine.wear = 0
 yield env.timeout(5)

 # The roughness achievable during machining depends on the wear of the machine
 item.surface += machine.wear**2 * 1.5

 # With each machining operation, the wear of the machine increases
 machine.wear += abs(normalvariate(0.006,0.00018))

 # Blocking the lathe for machining time
 yield env.timeout(1)

Process function: polishing

The polishing process can reduce roughness. If the temperature in the factory increases, then the polishing machine’s
potential to reduce the surface roughness decreases. The relationship between roughness and temperature is as follows:

\[\Delta surface = - (8 - temperature * 0.3)\]

def polishing(env, item, machine, factory):

 # The roughness will decrease the lower the temperature is.
 item.surface -= 8 - factory.temperature * 0.3

 yield env.timeout(1)

Global function: temperature

In the global function temperature_func, the profile of the temperature is described. In the simulated time (3 days),
it is assumed that the temperature profile (black) in the following figure is given every day. The global temperature
should correspond to the approximated course (red).

[image: ../../_images/temperature_profile.png]
The temperature values are stored in a dictionary (in the global scope) and assigned to the temperature in
temperature_func. The simulated time is checked for equality in the function, which is only allowed here because the
time intervals in the timeout event are not random (otherwise a KeyError would occur).

This temperature profile is only intended to demonstrate the functionality. Of course, it is possible to define much
finer profiles when corresponding data sets are available or to add certain variations to the values.

temp_dict = {0: 19, 240: 18, 480: 20, 720: 23, 960: 22, 1200: 20}

def temperature_func(env, factory):

 # Determinate the current daytime
 day_time = env.now % 1440

 # Set the new Temperature
 factory.temperature = temp_dict[day_time]

 # Wait exactly 4 hours
 yield env.timeout(240)

Start simulation

This code shows how the simulation is started. The simulation time is 4320 since this is exactly 3 days in the unit of
minutes. Since only the surface quality is of interest for the analysis, only the shafts are tracked. In addition, the
column item_id is removed during the export of the data (For demonstration purposes only).

from prodsim import Environment

if __name__ == '__main__':

 # Create simulation environment
 env = Environemnt()

 # Read in the process files
 env.real_files('./data/process.json', './data/function.py')

 # Start the simulation
 env.simulate(sim_time=4320, track_components=['shaft'], progress_bar=True)

 # Export the simulation data
 env.data_to_csv(path_to_wd='./output/', remove_column=['item_id'], keep_original=False)

Simulation output

The diagram below depicts the surface roughness that the shafts exhibit over the simulated time after processing at each
station.

The following aspects can be identified:

	The six outliers visible in the three plots are caused by broken drills;

	The zigzag shape that starts at the turning process step is caused by wear, which increases until maintenance before
abruptly decreasing;

	The effect of temperature appears in the wave-like course (green). There are three cycles since exactly 3 days were
simulated.

[image: ../../_images/surface.png]
The interruptions in production due to maintenance work at the lathe cannot be recognized. The reason for this is the
line thickness of the plots. The raw output data reveals the points in time at which the process is not active. This
time difference does not correspond exactly to the 10 minutes since the buffer stores are first filled before the
process succumbs.

[image: ../../_images/shaft_csv.png]

Example 03: Bolt

The purpose of this example is twofold: first, it sets up a pull-controlled material flow in the production system
using the interaction between the source and the sink of an order, and second, it shows that global attributes can
control the material flow in the production system.

Process description

To understand the interaction of source and sink more easily, a simple process was chosen. A forge station has five
forges, each of which produces six bolts per minute. These forges can be independently activated without start-up times.
The finished bolt storage can hold up to 5000 bolts.

[image: ../../_images/bolt_process.png]
This process runs 24 hours a day, and demand fluctuates throughout the day at unknown levels. The goal is to activate
the machines to ensure that demand can be met and productivity is adjusted to demand.

Source

Since the production process is controlled from the sink, it is necessary to ensure that enough input material is always
available. An infinite source achieves this.

def infinite_source(env, factory):
 yield 1

An infinite source, where new input material is placed without delay, does not yield a timeout event. To enable a
simulation with an infinite source, two conditions must be fulfilled:

	The capacity of the buffer storage that is to be filled must be limited; and

	The buffer storage capacity must be at least the same as the demand of the process concerning the first process step.

Note

Stores that are filled by an infinite source should not be filled by additional finite sources since the infinite
sources dominate them.

Global function

There are three global attributes:

	number_bolts: The number of bolts in the final storage

	active_machines: The number of currently active machines

	max_active_machines: The maximum allowed number of currently active machines

Since the demand (fictitious) is unknown and the production capacity is to be dynamically controlled, the number of
bolts in the final storage is used as a control variable.

\[\begin{split}max_active_machine = \left\{\begin{array}{ll} 5 & ; number_bolts \in \lbrack0,1000) \\
 4 & ; number_bolts \in \lbrack1000,2000) \\
 3 & ; number_bolts \in \lbrack2000,3000) \\
 2 & ; number_bolts \in \lbrack3000,4000) \\
 1 & ; number_bolts \in \lbrack4000,5000) \\
 0 & ; number_bolts = 5000\\
 \end{array}\right.\end{split}\]

The idea is that when the demand increases, the number of bolts in the final storage decreases. Thus, the lower the
number of bolts, the higher the number of active machines must be, such that the production capacity adjusts itself with
a slight time delay to the subsequent demand without having to know the demand. To make this work, the maximum average
demand must be smaller than the maximal production capacity of 30 (6 * 5).

control_logic = {1000: 5, 2000: 4, 3000: 3, 4000: 2, 5000: 1}

def global_control(env, factory):

 # Set max_active_machines_based on number_bolts
 for quantity in control_logic.keys():
 if factory.number_bolts < quantity:
 factory.max_active_machines = control_logic[quantity]
 break
 factory.max_active_machines = 0

 # Update every time step (minute)
 yield env.timeout(1)

Process function: forging

As the focus is on the material flow, no attributes of the bolts are considered in this process function. Before the
forging starts, whether the maximum number of active machines has been reached is checked. Since the cycle time is 1
minute, this check is repeated every minute. If this check is passed, then the number of active machines is increased,
and the machine is blocked for the forging time. After the forging has finished, the global variable for storage filling
is updated, and the number of active machines is updated again.

def forging(env, item, machine, factory):

 # Check if production capacity is reached.
 while True:
 if factory.active_machines < factory.max_active_machines:
 break
 yield env.timeout(1)

 # Update currently active machines
 factory.active_machines += 1

 # Block forge for forging time
 yield env.timeout(1)

 # Update store quantity
 factory.number_bolts += 6

 # Update currently active machines
 factory.active_machines -= 1

Sink

It is assumed that the demand follows the given course (black) daily and undergoes certain variations. An approximation
is made by six partial intervals, which demonstrate a certain scatter (the 95% interval is indicated).

[image: ../../_images/demand_profile.png]
In addition, a large demand occurs for approximately 250 bolts approximately every 4 hours, which is also subject to
variation. The following function presents the realization of such a source behavior. In addition, the current inventory
in the final storage of the bolts is updated.

Defines the demand distribution over time
time_dict = {1: [0, 4], 2: [4, 8], 3: [8, 12], 4: [12, 16], 5: [16, 20], 6: [20, 24]}
demand_dict = {1: [7, 0.5], 2: [8, 0.7], 3: [20.5, 1], 4: [22, 1.7], 5: [20, 2.5], 6: [12, 1.2]}

def bolt_sink(env, factory):

 demand = 0
 day_time = env.now % 1440

 # Determine the standard demand
 for index, time_interval in time_dict.items():
 if time_interval[0] < day_time/60 < time_interval[1]:
 dis = demand_dict[index]
 demand += int(normalvariate(dis[0], dis[1]))
 break

 # Determining the additional demand
 if random() < 0.004:
 demand += int(abs(normalvariate(250, 20)))

 yield env.timeout(1)

 # Update number of bolts
 factory.number_bolts -= demand

 # Just for output plotting purpose
 factory.current_demand = demand

 yield demand

Simulation output

The following figure depicts the course of the number of bolts in the final store as well as the demand. The additional
demands have been removed from the plot, and a moving average has been used for the demand. Due to oscillation processes
at the beginning, the simulated days 2–4 are shown.

The following aspects can be identified:

	At midday, the demand is approximately 20, so three to four forges must be active to meet the demand. Therefore, the
average inventory at midday is 2000 (see global_control). At night, the demand is approximately
eight, so only one to two forges are required.

	If there is an additional demand in the steady-state (e.g., at Sim. time = 2400), then the inventory level decreases
abruptly. This increases the number of active machines such that the required stock is built up again.

[image: ../../_images/demand.png]

Note

Of course, this mechanism does not represent an efficiency control. The point of this example is rather the use of
global quantities to limit machine activity. For example, the currently available electricity can also serve as a
limit for the machines.

Example 04: Toy figure

In this example, the characteristics of accessing assembly workpiece attributes are demonstrated. In addition, the usage
of the workpiece attributes reject and item_id is described. Finally, the output structure is presented along with how
the output can be transformed into the required format.

Process description

The production of plastic toy figures serves as an example process. The following product tree describes the components,
their quantities, and the assembly relationships.

[image: ../../_images/figure_tree.png]
The components arm, hand, leg and head are produced externally and do not have separate machining steps within
the process itself. The body component is injection-molded within the process. First, the components arm and hand
are assembled into the module upper_limb. In the following assembly process, all components are assembled in a figure.
Finally, quality is checked and incorrect figures are rejected.

[image: ../../_images/figure_process.png]
The components are connected using ball-and-socket joints. Each joint has a diameter. Based on the difference in
diameters, the tension that occurs in the joint is determined. For example:

\[t_4 = t_4(d_4,d_3)\]

The diameters of the joints are the attributes of the respective components, whereas the resulting tensions are
determined during assembly and are therefore attributes of the modules or the final product. Since the figure is
symmetrical, all arms, hands, and legs have the same attributes with individual characteristics.

[image: ../../_images/figure.png]

Assemble function

This subsection describes the assembly function that is called at the station assemble_figure. The argument item of
the function references the workpiece in whose process path the station from which the process function was called is
located (figure). This attribute can be used to access all assembled workpieces that are assembled before or at the
station under consideration. According to the following relationship, the tension is calculated and stored in attributes
t4 to t8 of the figure workpiece for each ball joint:

\[t_i(d_i,d_j) = (d_j - d_i - 2)^3 + 20\]

As an example, tension t4 is used to describe the access of the required diameters; t4 depends on d3 of the right arm
and on d4 of the body. Since item refers to figure, the module upper_limb must be accessed first. Since there are two
upper_limbs, one of the two must be selected. By definition, it is declared that the first element corresponds to the
right upper_limb. Since d3 is an attribute of the arm, the upper_limb must be used to access the arm and then d3.
This results in the following:

d3_1 = item.upper_limb[0].arm.d3

The structure is similar for the diameter d4. First, item (or figure) must be used to refer to body. Since d4 is an
attribute of body, d4 can be accessed as follows:

d4 = item.body.d4

The two stresses t2 have already been determined during the assembly of the component upper_limb.

def assemble_figure(env, item, machine, factory):

 # Get the diameters of the assembled items
 d3_1 = item.upper_limb[0].arm.d3
 d3_2 = item.upper_limb[1].arm.d3
 d9_1 = item.leg[0].d9
 d9_2 = item.leg[1].d9
 d10 = item.head.d10

 def get_t(d1, d2):
 return (d2 - d1 - 2)**3 + 20

 # Calculate the tension
 item.t4 = get_t(item.body.d4, d3_1)
 item.t5 = get_t(item.body.d5, d9_1)
 item.t6 = get_t(item.body.d6, d9_2)
 item.t7 = get_t(item.body.d7, d3_2)
 item.t8 = get_t(item.body.d8, d10)

 # Block the machine for the assembly time
 yield env.timeout(1)

Quality check

During quality control, all figures that do not fulfill the quality requirements are rejected. The criterion used here
is the tension, which must lie within a specified interval to be able to rotate the corresponding components against
each other. For each tension, a check is performed to ensure that it lies within the specified interval. If not, then
the reject attribute is set to True. Consequently, this item (including all assembled items) is removed from the
process and is not added to the following store.

In addition, the id of the figures is stored in the global attribute rejected_id to identify them more easily. In the
following, a method for identifying rejected items without global attributes is described.

def quality_check(env, item, machine, factory):

 # Limits for the tension
 t_min = 17.0
 t_max = 23.0

 def is_reject(t):
 if t <= t_min or t >= t_max:
 item.reject = True
 factory.rejected_id = item.item_id
 return True
 return False

 # Reject items and update profiling attributes
 if is_reject(item.t4):
 machine.r4 += 1
 if is_reject(item.t5):
 machine.r5 += 1
 if is_reject(item.t6):
 machine.r6 += 1
 if is_reject(item.t7):
 machine.r7 += 1
 if is_reject(item.t8):
 machine.r8 += 1
 if is_reject(item.upper_limb[0].t2):
 machine.r2_1 += 1
 if is_reject(item.upper_limb[1].t2):
 machine.r2_2 += 1

 # Block quality machine
 yield env.timeout(1)

The diameters of the joints are distributed as follows:

\[d_i \sim N(40,0.4)\ ,i\in\lbrace1,3,9,10\rbrace\]

\[d_i \sim N(42,0.4)\ ,i\in\lbrace4,..,7\rbrace\]

For d8, a normal distribution is also assumed, but the mean diameter continues to increase due to wear during the
injection. After 1500 injection processes, the mold is replaced so that the diameter starts again at 40. The following
figure visualizes the behavior on the basis of the number of rejects corresponding to the rejection reasons r6, r7,
and r8.

[image: ../../_images/rejection.png]

Note

If no attributes are changed at a station (e.g., quality_check), then setting the attribute measurement to true
is recommended because the workpiece attributes will not be tracked at this station. This reduces the data usage.

Merge output data

As a standard, the simulation data for each simulation object (order, station, factory) is saved in its own file. The
following text describes how these files can be merged in order to collect all information (d1,..,d10,t2,t4,..,t8)
concerning a single figure for all figures in a time series. Data merging according to the underlying assembly structure
is performed via the columns item_id and comp. Each order output whose workpieces represent assembly workpieces of
at least one other order contains the column comp, which contains the item_id of the item for which the assembly
item is assembled.

The following cutout of the csv file arm.csv indicates that the arm with the item_id 81 is mounted to an
upper_limb item with the item_id 86. Likewise, arm 84 is assembled to upper_limb 87.

[image: ../../_images/arm_csv.png]
In the file hand.csv, there are the two arms (item_ids: 82 and 85), which are mounted to the upper_limbs with the
item_ids 86 and 87.

[image: ../../_images/hand_csv.png]
Finally, in the file upper_limb.csv, the two workpieces with item_ids 86 and 87 can be found. They are mounted on a
figure with the item_id 77.

[image: ../../_images/upper_limb_csv.png]
Based on the textually described context, the assembly structures can be automatically tracked. The following figure
provides an overview of the required steps.

	First, the csv files must be filtered so that only the rows containing items at the last station (or at the station
where the current assembly structure is to be traced) are left

	All columns that are not required are removed. Only the attribute columns are kept in files representing sub
components, while the comp column is chosen as the index. In files belonging to main items, the item_id is used
as the index, and all columns except the comp and attribute columns are deleted.

	The main file is connected to the sub file (any number of sub files can be used) via the index (the concat method
from the pandas library is recommended).

	If the main item is assembled further, the comp column must subsequently be selected as the index to connect the
new file again.

[image: ../../_images/merge.png]
A particular detail must be taken into account. If the demand is greater than one, then the comp column contains the
item_id of the main item multiple times (e.g., upper_limb.csv - item_id: 77). The following figure demonstrates
how this case is handled. The file is split off (e.g., with the groupby method from the pandas library) using the comp
column. Thus, the attributes are numbered to be able to differentiate them later. This ensures that the index set comp
is unique and can be used to merge the files.

[image: ../../_images/demand_greater_one.png]
The following code block shows how to switch a csv file to state 1 from the first figure. The get_df method already
considers the case of demands greater than one. Thus, the partial data sets are returned in a list.

def get_df(name: str, num_main_args: int, sub: bool = True, amount: int = None):

 index_col, labels = 'item_id', ['station_id']
 if sub:
 index_col, labels = 'comp', ['station_id', 'item_id']

 # set 'index_col' as row index, and remove the column 'time' for all assemble objects by usecols (+3)
 iter_csv = pd.read_csv(path + name + '.csv', usecols=[i for i in range(
 num_main_args + 3)], iterator=True, chunksize=10_000, index_col=index_col)

 # build DataFrame and remove the columns 'labels'
 temp_df = pd.concat([chunk[chunk['station_id'] == station_id] for chunk in iter_csv]).drop(labels=labels, axis=1)

 # if there are multiple objects split the dataframe an return them as a list
 if amount is None:
 return temp_df
 return [temp_df.groupby('comp').nth(i).add_suffix('-%s' % i) for i in range(amount)]

The files created in this manner must be nested by hand according to the assembly structure. The following code block
presents steps 2 and 3 for the final assembly step of a figure. Since the figure is the final assembly layer, the
comp column does not exist in this file and cannot be set as the index. The used DataFrame upper_limb is previously
generated according to the same logic.

figure = get_df("figure", 5, sub=False)
head = get_df("head", 1)
body = get_df("body", 5)
legs = get_df("leg", 1, amount=2)

figure = pd.concat([figure, head, legs[0], legs[1], upper_limb[0], upper_limb[1], body], axis=1)
del head, legs, upper_limb, body

The following file depicts the results of this transformation. The row marked in yellow corresponds to the figure with
item_id 77. When the values of this column are compared with the elementary csv files shown at the beginning, the
values are observed to have been combined correctly. The file created in this way contains all 21 attributes of a figure
per row.

[image: ../../_images/merged_figure_csv.png]

Identify rejected items

Finally, how rejected workpieces can be identified is described. In the quality_check function, the item_id of
rejected items is stored globally. In the last step of the concatenation process described above, this global index set
can be used to filter the items whose item_id appears in this set. Similarly, if the difference set is formed instead
of the intersection set, nonrejected items can be obtained.

Alternatively, global attributes can be avoided if further process steps follow after the station at which workpieces
are declared to be rejects. First, the item_ids of all workpieces created by a source (station_id = -1) are summarized
in a set. Analogously, an index set can be created that contains all item_ids of items that have passed a specific
station. By forming the difference set, one receives all item_ids of workpieces that represent rejects. With this set,
as described above, the rejected workpieces can be identified.

 Python Module Index

 e

 		 	

 		
 e	

 	
 	
 environment	

 	
 	
 estimator	

Index

 C
 | D
 | E
 | I
 | M
 | R
 | S
 | V

C

 	
 	clear_env() (environment.Environment method)

D

 	
 	data_to_csv() (environment.Environment method)

 	
 	data_to_hdf5() (environment.Environment method)

 	define_process() (environment.Environment method)

E

 	
 	
 environment

 	module

 	Environment (class in environment)

 	est_attribute() (estimator.Estimator method)

 	est_function() (estimator.Estimator method)

 	
 	est_item() (estimator.Estimator method)

 	est_station() (estimator.Estimator method)

 	
 estimator

 	module

 	Estimator (class in estimator)

I

 	
 	inspect() (environment.Environment method)

M

 	
 	
 module

 	environment

 	estimator

R

 	
 	read_files() (environment.Environment method)

S

 	
 	simulate() (environment.Environment method)

V

 	
 	visualize() (environment.Environment method)

 _images/temperature_profile.png
temperature

24

temperature profile

23

22

21

20

19 4

18

17

16

15

10

day_time

15

20

_images/upper_limb_csv.png
upper _limb.csv

item_id t2 comp stationid time
4 0 nan -1 1
98 0 nan -1 9
87 19.974035 nan (1} 9

108 0 nan -1 10

47508 0 nan -1 4319

_images/define_process_create_files.png
Create files X

Name: project name

Path: path

_static/plus.png

_images/define_process_ex_process.png
order a — |—>@—>8 ﬁll |

order b — ~/\ >|

order ¢ —

_images/define_process_change_station.png
Change station X

Name: b2

Capacity: 1

Storage: storage

Measurement: False X~
Order: order v
Function: function

Omachining assembly

Demand: demand

Attributes: name distribution parameter

Add attribute

_static/file.png

_images/define_process_combine_stations.png
Combine stations X

Name station 1: first station name

Name station 2: second station name

_static/minus.png

_images/demand.png
4000

3500

3000

Bolts in store

2500

2000

2000

3000

4000
Sim. time

5000

50

40

30

Demand

20

10

_images/demand_greater_one.png
sub.csv

attry id Comps time
1 S1 m;
2 S2 my
3 S3 my
4 S4 mo

fmy

o]

_images/define_process_orders.png
ProdSim - Define process

Add order ’ ‘ Edit factory ’ ‘ Combine stations ’ ‘ Refresh graph ’ ‘ Create files

_images/define_process_start.png
ProdSim - Define process

Add order

Edit factory

Combine stations

Refresh graph

Create files

_images/demand_profile.png
demand

25.0

225

20.0

17.5

15.0

125

10.0

75

5.0

demand profile

— real

10

day_time

15

20

_images/describe_process_update_graph.png
ProdSim - Define process

al b1 ci
b2
a b3 c
A
Add order ’ ‘ Edit factory ’ ‘ Combine stations ’ ‘ Refresh graph ’ ‘ Create files Q

_images/define_process_add_order.png
Add order

Order name:
Source name:

Sink name:

Number stations:

Storage:

Priority:

order name
source name
sink name
number stations
storage

priority

_images/define_process_assembly.png
Change station

Name:
Capacity:
Storage:

Measurement:

Order:

Function:

Component:

Attributes:

b3

False

b

b3_example

machining®assembly

name

component

a

X

demand

1
c

Add component

distribution

parameter

Add attribute

_images/bolt_process.png
O——A

forge bolt-store

_images/decribe_process_factory.png
Edit factory X

Functions: name
function name Add function
Attributes: name distribution parameter

Add attribute

_images/define_process_change_order.png
Change order

Name: b
Number stations: 3

Priority: 10
Storage: 10
Source: b_source
Sink: b_sink
Attributes: name

distribution parameter

Add attribute

_images/distribution_b.png
probability

distribution of attr_1 (p=0.4)

°
®

°
3

°
S

°
&

°
=

°
w

°
o

attr_1

nav.xhtml

 Table of Contents

 		
 Overview

 		
 API Reference

 		
 Environment

 		
 Estimator

 		
 Interface Files

 		
 Production structure

 		
 Order

 		
 Station

 		
 Factory

 		
 Production functions

 		
 Process function

 		
 Source and Sink

 		
 Global function

 		
 Distribution

 		
 Attribute values

 		
 User defined

 		
 Fixed

 		
 Binary

 		
 Binomial

 		
 Normal

 		
 Uniform

 		
 Poisson

 		
 Exponential

 		
 Lognormal

 		
 Chisquare

 		
 Student-t

 		
 Simulation output

 		
 General structure

 		
 Output station

 		
 Output order

 		
 Output factory

 		
 Defining processes

 		
 Start the application

 		
 Create and change order

 		
 Change station

 		
 Edit factory

 		
 Create files

 		
 Examples

 		
 Example 01: Gearbox

 		
 Process description

 		
 Define orders

 		
 Define stations

 		
 Define factory

 		
 Define functions

 		
 Inspect

 		
 Visualize

 		
 Example 02: Shaft

 		
 Process description

 		
 Process function: drilling

 		
 Process function: turning

 		
 Process function: polishing

 		
 Global function: temperature

 		
 Start simulation

 		
 Simulation output

 		
 Example 03: Bolt

 		
 Process description

 		
 Source

 		
 Global function

 		
 Process function: forging

 		
 Sink

 		
 Simulation output

 		
 Example 04: Toy figure

 		
 Process description

 		
 Assemble function

 		
 Quality check

 		
 Merge output data

 		
 Identify rejected items

_images/arm_csv.png
arm.csv

d2 d3 item_id comp stationid time
39.869286 41.634014 5 nan -1 1
40.347916 42.141098 95 nan -1 9
40.032082 42.003731 70 75 1 9
40.015373 42.099506 73 76 1 9

40.01704 42.378185 103 nan -1 10

39.311573 42.156609 47506 nan -1 4319

_images/distribution_f.png
10

0.8

°
S

probability

0.4

02

distribution of attr_1 (v=4.34)

_images/assembling_structure.png
item

1
itemA
1 1 2
itemB itemB itemC
2

itemD

_images/distribution_i.png
035

030

probability
o
2
8

°
2
&

0.05

0.00

distribution of attr_1 (n=5, p=0.4)

0 1 2 3 4 5

attr_1

_images/distribution_c.png
density

distribution of attr_1 (n=2)

attr_1

_images/distribution_e.png
density

distribution of attr_1 (B=2.5)

attr_1

_images/distribution_p.png
025

0.20

probability
o
2
G

0.10

0.05

0.00

distribution of attr_1 (A=

1)

0 1 2 3 4

attr_1

5

—
6 7

_images/distribution_t.png
distribution of attr_1 (n=4)

_images/distribution_l.png
density

distribution of attr_1 (p=0,0=0.5)

10

attr_1

_images/distribution_n.png
distribution of attr_1 (p=:

attr_1

_images/distribution_u.png
0.8

07

0.1

0.0

distribution of attr_1 (a=1, b=2.34)

rom— - -

10 15 2.0
attr_1

2.5

_images/distribution_ud.png
probability

05

0.4

03

02

0.1

0.0

distribution of attr_1

0.9

18

2.9
attr_1

_images/figure.png

_images/global_func_logic.png
update
attributes

global

d a

i

yiel
timeout event

_images/hand_csv.png
hand.csv

dl item_id comp station_id time
42.363113 6 nan -1 1
41.320095 96 nan -1 9
41.903492 71 75 1 9
41.751251 74 76 1 9

41.939342 104 nan -1 10

41.505733 47507 nan -1 4319

_images/figure_process.png
O Machining station
O Assembly station

O Quality station

handistore leg-store hegd-store
N
assemBe_limb upper_limb-store assemble_figure quality_check figure-store
arm-store bodyistore

injection_molding

_images/figure_tree.png
] End product

] Module
[] Component

figure
1 2 1 2
head | |legs | | boby | | upper_limb

arm

hand

_images/merged_figure_csv.png
merged _figures.csv

d2-0 d2-1 d1-0 d1-1 t2-0 t2-1 t8 d8 . d10
39.869286 40.197178 42.363113 41.790482 20.120426 19.932732 18.410622 40.575005 ... 41.407993
39.584332 40.347916 41.810524 41.320095 20.011572 18.914202 17.642654 40.256783 ... 40.925896

40.01704 39.653412 41.939342 41.962372 19.999531 20.029491 19.669096 40.580677 ... 41.889004

39.825287 39.825287 42.476002 42.441421 20.00679 20.150728 19.846375 40.659237 ... 42.194614

_images/output_file_factory.png
factory.csv

global_attr; --- global_attr, time

_images/logo.png
rodSim

_images/merge.png
main.csv sub.csv
attr,, id,, compp,| --- time attrg id, comps time
my np 1 S1 my
ma n2 2 S2 m2
attr,, [COMPm, attrg
g np g
m2| ng 2

\W

attr,, compm| attrg
mj np
ms2 n3

attr,,

attrg

np

_images/output_file_station.png
station_name.csv

station_attr; --- station_attr,, machine_nr time

_images/product_process_gearbox.png
O Machining station
O Assembling station
O Quality station

lathe shaftistore housing-store

assenfbe_gs gear _shaft-store assemble_gb quality check gearbox-store

heat_treatment gear-store screw-store

_images/output_file_order.png
order_name.csv

order_attr; --- order_attr,, item _id comp station_id time

_images/screenshot_web_app.png
ProdSim Visualizer

heat_treatment lathe

gearsstore shaftystore

‘:Issemble g§'

gear_sheft-store

assemble_gb

housing-store-~~ quality$ check '~ screw-store

“A

gearbax-store

A

Order:

gearbox

Order Data:

properties value

name gearbox

priority 10

source source_1

sink default sink
Station Data:

properties value

name assemble_gb
capacity 1
measurement false
storage 1

function ['assemble_gb']
demand-gearbox [1]
demand-housing [11
demand-screw [81
demand-gear_shaft|[1]

_images/shaft_csv.png
shaft.csv

surface station_id time
10.222558 -1 1
9.8581171 -1 2
10.222558 0 3
10.267733 -1 174
9.9085436 -1 175
8.203002 1 181
5.9030023 2 182
8.104413 1 4319
9.9859371 -1 4319

_images/product_tree_gearbox.png
gearbox

1

] End product

[] Module
[] Component

housing

screw | | gear_shaft

gear

shaft

_images/rejection.png
Number rejected figures

Rejections over time by rejection reason

— 8

100 7

80

60

20

0 1000 2000 3000 4000
Sim. time

_images/surface.png
Surface over simulated time

i

"N,p"

i
8 i
g 8 i
7
6
5
[10¢

uuuuuuuu

_images/shaft_process.png
O M) M)
/
drill lathe polisher shaft-store

_images/source_logic.png
create generator
from source

call next() 'wait’ for the
on generator

1

[Stoplteration] i[else]
[int] I [simpy. Timeout]

@

